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Abstract
Azo dyes, commonly found in textile wastewater, are major environmental contaminants that pose threats to a healthy ecosystem.
Rapid industrial development has led to a surge in dye-contaminated wastewater, raising global environmental concerns due to the
complex and resistant structure of these dyes. Bacterial remediation of dyes from contaminated aquatic systems is an environmen-
tally friendly approach. The aim of this study was to isolate and identify a bacterial strain with the potential to decolorize an azo dye,
Direct Blue-1, from dye-laden wastewater, and optimization of process parameters to achieve maximum level of dye decolorization.
A total of 9 bacterial cultures were isolated at 50 mg/l dye concentration from dye-contaminated wastewater. While a single bacte-
rial isolate was capable of decolorizing Direct Blue-1 dye at 200 mg/l in minimal salt agar medium. Morphological, biochemical,
and 16S-rRNA gene sequence analysis revealed that the isolated bacterium was Bacillus cereus strain MT-4. Under optimized cul-
ture conditions, a maximum of 97% decolorization was achieved with a 5% (v/v) inoculum. This study highlights the potential of
Bacillus cereus MT-4 for the effective removal of Direct Blue-1, suggesting its application in sustainable wastewater treatment.
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1. Introduction

Ecosystem pollution continues to be a significant global
challenge, with dye-laden effluent emerging as one of
the major concerns. The widespread utilization of dyes
driven by accelerated industrial expansion and increasing
demand in multiple sectors has severely aggravated the
issue [1]. Approximately 5–10% of dyes are discharged
into industrial effluent, with azo-dyes representing 60%
of the total dyes utilized [2–4]. Currently, azo-dyes and
anthraquinone dyes are the two primary classes utilized
for fabric dyeing. Under typical conditions, azo dyes are
resistant to degradation and not efficiently removed by
the traditional wastewater treatment processes due to their
complex structure and anthropogenic nature of azo- dyes.
Some of the dyes and their breakdown products facilitate

the spread of toxic groundwater and surface water con-
tamination from industrial textile efflux, further affecting
alternative water sources [5–7].

Various pollutants, including azo dyes, heavy met-
als, microplastics, and other emerging pollutants, are ad-
versely affecting the ecosystem [8–11]. Azo-dyes present
pose significant environmental and health concerns due
to their tumorigenic, toxic, and mutagenic properties [12].
Direct Blue (DB) dye is used in textiles, and many re-
searchers have studied the microbial-based remediation of
DB dyes [13–15]. Azo-dyes and their degradation byprod-
ucts, including aromatic amines, are recognized as muta-
genic and carcinogenic compounds [16,17]. Hernández-
Zamora et al. [18] reported the toxic impacts of dye on
microalgae, cladocerans, and embryos of zebrafish.
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Dye pollution also results in undesirable water col-
oration, hinders the penetration of light, and reduces the
dissolved oxygen levels in the riverine habitat, threatening
water-dwelling species. Therefore, proper treatment of dye-
laden industrial effluent is crucial before its release into wa-
ter bodies. Biological processes for the treatment of textile
effluents are preferred over physicochemical methods due to
their affordability, eco-friendly nature, and lower sludge pro-
duction [19,20]. Microbe-based remediation is suitably em-
ployed for the mitigation of environmental pollutants [21,22].
Previous studies have reported remediation and decoloriza-
tion of azo dyes from a contaminated environment [14,23].
As a sustainable solution for dye detoxification, microbe-
mediated processes are being globally recognized.

Bacterial remediation approach has been developed
into a key strategy for treating industrial effluent due to its
multiple advantages. Particularly, they can persist and de-
velop substantial biomass even under the nutrient-limited
conditions. Additionally, their potential in adapting to
harsh environmental conditions through various facul-
tative anaerobic, anaerobic, and aerobic pathways high-
lights their ecological effectiveness [24–26]. Researchers
reported dye remediation by microbes like Di-Azo dye
Direct Red 81 degraded by a bacterial mixed culture [27],
and Direct blue-1 dye decolorization and degradation by
the fungus Aspergillus terreus GS28 [14]. Optimization
of different process factors needs to be studied for achiev-
ing the maximum level of dye decolorization. Moreover,
the application of a single efficient bacterial isolate may
be a cost-effective approach for on-site dye decolorization.
In this study, a potential Direct Blue-1 decolorizing bac-
terium was isolated from dye wastewater and identified
by morphological and molecular methods. The effect of
potent strain on the degradation of Direct blue-1 was op-
timized at different temperatures for identifying the max-
imum level of dye decolorization for its possible role in
environmental bioremediation.

2. Materials and Methods

2.1. Sampling

Dye-contaminated wastewater samples were collected in
sterile bottles near the discharge points of power looms in
Tanda, Ambedkar Nagar, Uttar Pradesh, India, and stored
at 4 ◦C for further experimentation.

2.2. Isolation and Screening of Potential
Direct Blue 1 Dye Decolorizing Bacteria

The pour plate technique was employed to isolate bacte-
ria (at 35 ◦C for 48 h), which were capable of decoloriz-

ing Direct blue-1 on solid minimum salt medium (MSM)
containing 50 mg dye concentration. For the screening of
the most potent Direct blue-1 dye decolorizing bacterium
and its further application in decolorization studies, MSM
agar plates were added with altered with dye concentra-
tion (50–300 mg/L), incubated, and observed for further
study.

2.3. Identification of Potential Direct
Blue 1 Dye Decolorizing Bacterium

Morphological and biochemical characteristics were used
for preliminary identification [28]. Additionally, molec-
ular characterization was used to identify bacteria at the
species level by using the 16S rRNA gene sequencing ap-
plication. The 16S rRNA gene sequence analysis was car-
ried out at CytoGene Research & Development, Lucknow
(India).

2.4. Culture Conditions for Dye
Decolorization

The dye decolorization trials were performed in the broth
media, and inoculated with selected potential bacterial iso-
lates, and incubated at 35 ◦C for 72 h. All experiments
were conducted in triplicate. Periodically, the media sam-
ples were taken out and the extent of dye discolorationwas
examined at every 24 h, and analysed spectrophotometri-
cally (at 593 nm).

2.5. Factors

Various process factors influencing bacterial dye decol-
orization efficiency were studied to determine optimal
conditions.

2.5.1. Effect of Static and Shaking of Culture
Medium

In order to determine the impact of shaking and static cul-
ture conditions, the extent of dye discoloration was mea-
sured at 48 h incubation.

2.5.2. Effect of Dye Concentration, Incubation
Time, pH, Temperature, and Inoculum Dose

The impact of different parameters like dye level (50–200
mg/L), pH (5.0–9.0), temperature (25–40 ◦C), incubation
time (24–72 h), and inoculum dose (1–4% v/v) on discol-
oration of Direct blue 1 dye was investigated. Samples
were treated under the previously described culture condi-
tions.
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2.6. Measurement for the Extent of Dye
Discoloration

To determine Direct blue-1 dye discoloration, the samples
drawn every 24 h were centrifuged (at 10,000 rpm for 10
min). Further, the supernatant was analysed to determine
the percentage of decolorization by using a UV-vis spec-
trophotometer (Labtronics) [14,29]. The extent of dye dis-
coloration was calculated using the following formula:

Decolorization extent(%) =
Initial absorbance− Final absorbance

Initial absorbance
× 100

2.6.1. Statistical Analyses

The bacterial decolorization experiments were executed in
triplicate and the statistical analysis (standard deviation)
was done by using the Microsoft Excel program.

3. Results and Discussion

The improper release of colouredwastewater to the aquatic
environment is one of the significant concerns. The pres-
ence of azo dyes in the aquatic ecosystems has adverse
effects on humans, animals, and plants. Microbe-based
decolorization is one of the viable options that helps in
environmental sustainability by removing dye pollution.
To facilitate bacterial biodecolorization, optimization of
process parameters was executed.

3.1. Isolation of Potential Bacteria for
Discoloration of Direct Blue-1 Dye

To isolate dye-decolorizing bacteria, the sample was inoc-
ulated on MSM agar medium. In this study, the dye was
decolorized in the medium after 48 h of incubation (Fig-
ure 1). Further, the bacterial colonies were isolated and
purified on the same medium.

A total of nine bacterial isolates were found to be ca-
pable of decolorizing Direct blue 1 dye at 50 mg/L concen-
tration within 48 h of incubation. While, single bacterial
isolate was capable of growing onMSAmedium amended
with 200 mg/L dye concentration (Table 1). There was no
growth of any bacterial isolates above 200 mg/L dye con-
centration. Higher concentration of dye (above 200 mg/L
of Direct Blue 1) were inhibitory for bacterial growth.
Several researchers studied the effect of dye level on the
extent of microbe-based decolorization [23,30–32]. In
a research investigation, dye decolorization was assessed
using mixed consortia of Bacillus sp., at different dye con-
centrations from 200 to 1000mg/l, and reported decreased
extent of decolorization with increasing dye concentra-
tion [33]. The increasing concentration of dye might be
toxic to bacterial isolates, resulting in reduced dye decol-
orization.

Table 1: Screening of the most potential Direct blue-1 decoloriz-
ing bacterium.

Sr. No. Dye Concentration
(mg/L)

Number of Bacterial
Isolates

1 50 9

2 100 5

3 150 2

4 200 1

5 250 -

6 300 -

3.2. Morphological, Biochemical 16S
rRNA Gene Sequence Analyses for
Identification of Potential Bacterial
Isolate

In this study, a potential Direct blue-1 decolorizing bacte-
rial, NSW-1, was isolated. Morphologically, the bacterial
isolate was rod-shaped, and biochemical characterization
showed the isolate was Gram-positive, catalase-positive,
and capable of utilizing carbohydrates like glucose, su-
crose, etc. Further, the isolate NSW-1 was identified as
Bacillus cereus MT-4 using 16S rRNA gene sequence
analysis. Figures S1 and S2 (supplementary) show the
gel images of isolated genomic DNA and PCR-amplified
products. The experiments for DNA extraction, agarose
gel electrophoresis, and PCR were conducted at Cytogene
Research Lab, Lucknow.

The accession number LC830210 was assigned after
depositing the 16S rRNA gene sequence (1470 bp) to the
DNAData Bank of Japan database (https://www.ncbi.nlm.
nih.gov/nuccore/LC830210.1/, access date 9 July 2024).
The phylogenetic tree was constructed to show the relat-
edness with other related genera (Figure 2).

3.3. Optimization of Factors Affecting
Dye Decolorization

Different biodecolorization conditions like dye concentra-
tion, temperature, incubation time, pH, culture medium
shaking, and inoculum size were optimized. Biodecol-
orization of Direct blue-1 was better under static condi-
tions (94.7%) compared to shaking conditions (83%) at 48
h incubation. This might be due to better enzymatic activ-
ity under no-shaking culture conditions. While the percent
decolorization was lower at 24 h, an insignificant change
in percent decolorization was observed after 48 h of incu-
bation. Dye decolorization efficiency was attempted with
varying dye concentrations from 50 to 200mg/l. It was ob-
served that maximum decolorization was achieved at 50
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Figure 1: Isolation of Direct Blue-1 decolorizing bacteria.

mg/L; further increases in dye concentration caused a de-
crease in the percentage of decolorization. A minimum of
17% decolorization was observed at 200 mg/l concentra-
tion. In this study, the extent of dye decolorization was cal-
culated using optical density (OD) measurement. Other
researchers also used OD for measuring decolorization of
dyes [6,34]. In a research investigation, Afrin et al. [34]
reported degradation of textile dyes using a bacterial con-
sortium bymeasuring OD at optimized conditions, pH 7.0,
37 ◦C, at 100 mg/L dye concentration.

Further, Direct blue-1 (50 mg/L) amended medium
for bacterial decolorization was exposed to a wide range
of temperatures of 25–40 ◦C. It was observed that tempera-
ture alteration can significantly impact the bacterial decol-
orization of azo dyes. Approximately 95% of decoloriza-
tion of Direct Blue-1 dye was observed by using 4% v/v
inoculum dose at pH 7.0 and 35 ◦C. There was a decrease
in decolorization at various other tested temperatures (Fig-
ure 3). Further decolorization studies were attempted at 48
h incubation and 35 ◦C.

Previous studies by multiple researchers, such as El
Awady et al. [35], observed the optimal decolorization
of different functional azo dyes by Streptomyces albid-
oflavus 3MGH around the temperature of 35 ◦C. Similarly,
Barathi et al. [7], reported a similar trend of maximum dye
decolorization at 35 ◦C of Reactive Blue 160 textile dye
by Bacillus subtilis. In another investigation, Srivastava
et al. [36] found efficient decolorization at 40 ◦C. These
findings suggest that at 35–40 ◦C, bacteria exhibit sig-
nificant decolorization activity, likely due to enhanced
enzymatic performance. Several researchers studied on

decolorization of dyes for environmental sustainability
and pollutant remediation [6,7,13].

The extent of dye degradation was significantly af-
fected by the amount of bacterial inoculum. The range of
inoculum dose taken into account for the investigation of
Direct Blue-1 dye decolorization was 1.0–6.0% v/v. At
5% of inoculum size, the decolorization was found to be a
maximum of 97%, while a decreased percent decoloriza-
tion was reported with any deviation from the optimal
value of inoculum dose. In the present study, the results
showed that with an increase in the size of the inoculum,
the decolorization of dye rises, whichmay be due to higher
enzyme production. In a study, Srivastava et al. [36] stud-
ied biodecolorization of Reactive Black 5 dye by B. albus
DD1 isolated from textile water effluent, and they found
the highest decolorization (74.7± 2.1%) with a higher in-
oculum size (25% v/v), while lesser decolorization (54.9
± 1.2%) with 5% inoculum size. However, in this study,
no significant change in decolorization was observed by
increasing inoculum size from 5% to 6%, which might be
due to depletion of nutrients because of increased biomass,
which may result in lesser enzymatic function [36,37].

pH is one of the crucial factors for any bioprocess
and significantly influences microbial functions. The pH
range for the Direct Blue-1 dye decolorization was from 5
to 9. It was observed that at pH 7, maximum decoloriza-
tion (97%) of the dye was obtained. Further deviation in
pH from the optimal value resulted in decreased biodecol-
orization. Similarly, the optimum pH for maximum decol-
orization by Bacillus alba was reported to be 7.0 by Sri-
vastava et al [36] in their investigation. In a study, Neetha
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Figure 2: Phylogenetic tree of Direct blue-1 decolorizing bacterial isolate NSW-1.

Figure 3: Decolorization of Direct blue-1 under the influence of temperature.
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et al. [38] optimized decolorization of Direct Blue-14 dye
by B. fermus isolate. In another investigation, El Bouraie
& El Din [39] also observed the maximum result for dye
decolorization at pH 7. The findings suggest that the bac-
terium Bacillus sp. prefers neutral pH for its maximum
decolorization capability. Many researchers also investi-
gated the decolorization and detoxification of Direct blue
dye by bacteria [40–42]. Wu et al. [43] studied the en-
zymatic discoloration of methylene blue dye by Bacillus
thuringiensis. These studies indicate bacterial-based de-
colorization may be an effective way for the remediation
of dyes from a contaminated aquatic environment.

4. Conclusions

Addressing dye contamination is a critical requirement to-
day. Different bioremediation strategies can be highly effec-
tive in the successful breakdown of synthetic dyes. In this
study, the maximum decolorization of 97% was obtained by
using a single culture of the bacterium Bacillus cereusMT-4
strain under optimized cultural conditions, pH, temperature,
inoculum size, and dye concentration were 7.0, 35 ◦C, 4.0%
and 50 mg/L dye, respectively. Further research investiga-
tions are required for the possible large-scale decolorization
of Direct Blue-1 dye by an isolated bacterium.
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