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1. Introduction in next-generation sequencing and computational bioin-
formatics have enabled the detection of thousands of rare

Cancer remains a significant global health challenge, with variants; however, their phenotypic functions remain un-
varying incidence and mortality rates across the globe. Ac-  known [6]. In claims data from the Swiss population [7],
cording to the Surveillance, Epidemiology, and End Re-  drug switching among escitalopram users was found to
sults (SEER) registry [1] and the American Cancer Soci- e more common in younger patients (under 20 years
ety (ACS) [2], more than 2 million new cancer cases are of age) and in women. A Japanese Study [8] used phar-
eXpectEd in the US by 2025. Understanding the burden macogenomic data on CYP450 enzymes to predict phar-
of disease and advancements in tailored treatments, also  macokinetic changes caused by genetic variants in drugs
known as precision or personalized medicine, is crucial for commonly used among Asian populations. A pharma-
improving patient outcomes. Pharmacogenomics is the cogenomic study in Chinese patients examined polymor-
study of how an individual’s genetic makeup influences phisms in DNA-thioguanine nucleotide metabolism to
their response to treatment [3]. This field aims to identify jnform precision dosing for thiopurine therapy [9]. We
genetic variations among individuals (pharmacogenomic have recently reported the whole-genome transcriptome
variants) to predict drug efficacy and the risk of adverse profiling of Withania somnifera, highlighting its potential
drug reactions, thereby optimizing and personalizing treat- penefits for neurodegenerative diseases [10]. Although
ment while minimizing side effects for patients [4]. In  this study primarily highlighted modulation of significant
the last decade, attention has ianeaSineg shifted beyond genes involved in neurodegeneration by Withania, an ad-
the traditional coding genome to noncoding RNAs (nCR-  ditional regulatory layer arises from noncoding RNAs,
NAs), which serve as key regulators of gene expression  fynctional molecules that, though untranslated, influence
and biomarkers in cancer, adding complexity to tumor sig-  translation, genome defense, and gene expression at both
naling networks. transcriptional and post-transcriptional levels [11]. These
. include microRNAs (miRNAs), long noncoding RNAs
2, Pharmacogenomlcs and (IncRNAs), long intergenic noncoding RNAS (lincRNAS),
NonCOd]ng RNAs circular RNAs (circRNAs), small nucleolar RNAs (snoR-
. ) . . NAs), piwi-interacting RNAs (piRNAs), vault RNAs (VR-
Population pharmacogenomics explains individual differ- \ aq oy VIRNAS), tRNA-derived small RNAs (tsRNAS),
ences in treatment response due to genetic germline vari- o1 - oy studies on Withania indicate extensive involve-

ations in specific genes, such as CYP2D6 [5]. Advances ..+ o noncoding RNAs, including miRNAs, IncRNAS,
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and circRNAs, in mediating its health-beneficial effects
(data not published), and they explain, in part, the phar-
macokinetic profile differences observed between males
and females [12].

ncRNA expression levels are known to be dysregu-
lated in various cancers. Some examples include the well-
studied INcRNA MALAT1L, in lung, colorectal, prostate,
breast, liver cancers, and glioma [13]; IncRNAs HOTAIR
and GASS in breast cancer; the miRNAs miR-221/222 in
stomach and prostate cancers; miRNA miR-106a in col-
orectal, pancreatic and prostate cancers [14]; circRNAs
circ-FOXO03 in lung cancer [15] and circRNA-MYLK in
bladder cancer [16].

will be useful in drug discovery, biomarker discovery,
and precision dosing in cancer, as we have discussed in
detail earlier [33,34].

3. Noncoding RNAs in Cancer
Diagnosis and Therapy

nNcRNAS can serve as non-invasive biomarkers in diagnos-
tic techniques such as liquid biopsies, alongside conven-
tional markers like cell-free DNA (cfDNA) and circulating
tumor DNA (ctDNA) [35,36]. They can also be detected
in body fluids such as blood and urine; Yuan et al. iden-
tified a circulating 4-IncRNA panel from blood samples

ncRNAs alter mRNA expression by post-transcriptionalwith value in diagnosing non-small cell lung cancer [37].

modifications. For instance, Tabnak et al. [17] have eluci-
dated the involvement of ncRNAs in the modification of
N6-methyladenosine (mSA), which in turn dysregulates
the Wnt pathway and promotes tumorigenesis and cancer
progression. piwiRNAs have also been implicated in epi-
genetic histone and DNA maodifications, tumor growth,
cancer metastasis, chemoresistance, and modulation of
other noncoding RNAs [18]. To date, four human vault
RNAs (VtRNA1-1, 1-2, 1-3, and 2-1), part of a ribonu-
cleoprotein ‘vault complex’, have been discovered and
investigated in the context of cancer [19]; Ferro et al. [20]
studied the roles of tRNAL-1 in apoptosis resistance, tu-
morigenesis, cell proliferation, and chemoresistance. Hu
et al. found that tsSRNA-5001a promotes cell proliferation
in lung adenocarcinoma and is also implicated in its recur-
rence [21]. We have also previously reported the pharma-
cogenomics of miRNAs in osteosarcoma [22], miRNAs
in cancer chemoprevention and chemoresistance [23,24],
IncRNA-miRNA interactions [25] and noncoding RNAs
in various solid tumor malignancies, such as multiple
myeloma [26], malignant mesothelioma [27] and prostate
cancer [28,29].

An association between the rs7958904 polymor-
phism in the IncRNA HOTAIR and cervical cancer has
been established in Bangladeshi women [30]. The
Manolopoulos group in Greece has reported that the
MIR27A rs895819 CC genotype results in reduced miR-
27a-3p expression, thus serving as a marker of fluoropy-
rimidine response in cancer therapy [31]. Interestingly,
Su et al. [32] established noncoding RNA regulatory net-
works and studied drug-target interactions. The integra-
tive approach employed in this study facilitated the iden-
tification of key therapeutic targets for the treatment of
various cancers. Moving forward, an integrative pharma-
cometrics approach that combines knowledge of pharma-
cokinetics, pharmacogenomics, noncoding RNAs, recep-
tor pharmacology, preclinical data, and human clinical
trials will be necessary to develop a holistic model that

miRNAs mediate signaling pathways that facilitate com-
munication between tumor cells and their microenviron-
ment [38], and also crosstalk with IncRNAs [39]. Their
sensitivity and specificity compared to traditional markers
have been demonstrated in certain cancers, e.g., prostate
cancer [40]. ncRNAs also have therapeutic potential in
two main contexts: they can either compensate for the loss
of function of downregulated RNAs (replacement therapy)
or suppress overexpressed RNAs. An example is miRNA-
based therapy, where mimics that emulate and restore the
functions of endogenous miRNAS, or miRNA antagonists
that downregulate miRNA expression, are both being ex-
plored [41]. Several strategies are available for deliver-
ing ncRNAs to their targets, including viral or plasmid
vectors, liposomes, natural or synthetic nanoparticles, and
cell-derived exosomes.

4, Challenges in Precision
Oncology Implementation

Significant advances are made each year in noncoding
RNA research, uncovering new functions and regulatory
networks. Multiple ncRNAs may regulate a single gene or
target several mMRNAs each, while interacting with other
ncRNAs. We have also previously described such in-
tricacies [28,29] and their implications in translational
medicine [25]. Moreover, an ncRNA might target onco-
genes in a certain cancer while itself functioning as an
oncogenic molecule in another, such as the miRNA miR-
10 [42].

Winkle et al. broadly classify the major hurdles of
therapeutic implementations into those of immunogenic-
ity, specificity, and delivery, and describe innovative so-
lutions to each [43]. The mechanistic challenge of speci-
ficity is arguably the most critical, as ncRNAs can share
sequence homology with endogenous RNAs, and non-
specific binding of therapeutics may lead to the silenc-
ing of unintended targets. Further, even if the molecule
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binds to the intended target and executes its function, it
is challenging to accurately modulate every upstream or
downstream consequential effect linked to the respective
regulatory network(s). Additionally, ncRNAs, as a class
of RNA, have a relatively short half-life [44,45] due to
their intrinsic temperature sensitivity and susceptibility to
nucleases and hydrolysis, both in vitro and in vivo. They
are also rapidly cleared from the system [46], threatening
their structural stability, complicating delivery, and reduc-
ing their circulating time. Moreover, their negative charge
and hydrophilic nature complicate cellular uptake. Local
administration of therapeutics and optimizing carriers has
been suggested to protect ncRNAs from degradation and
ease entry into the cellular membrane.
The importance of a pharmacometrics perspective

role(s), as biomarkers, and otherwise [51], of the noncod-
ing RNA interactome—mainly miRNAs, IncRNAs, and
circRNAs [52,53]—in cardiovascular diseases [54], neu-
rodegenerative diseases [55,56], inflammatory diseases [57,
58], diabetes [59,60], sepsis, pulmonary diseases, and sev-
eral more. Also released recently are two valuable databases,
both maintained by the Cui laboratory at Peking University,
visualizing noncoding RNAs and their links to diseases:
the Human microRNA Disease Database (HMDD), which
holds over 53,000 manually compiled miRNA-disease as-
sociations [61], and the LncRNADisease v3.0 database
that has collected over 13,000 IncRNA associations and
12,000 circRNA associations with disease [62]. Harness-
ing this resource through machine learning and data analy-
sis and integrating it into a clinically actionable framework

cannot be overstated, as the pleiotropic and context-dependenftor personalized drug prescribing, similar to the MedeA ap-

actions of ncRNAs complicate traditional pharmacoki-
netic and pharmacodynamic workflows, as well as the
development of biomarker panels for cancer diagnosis
and screening. As ncRNA research and its applications
are still emerging, they cannot yet be evaluated against
existing standards of molecular and bioinformatics tech-
niques. Many ncRNAs, not being protein-coding, are also
not well-conserved between species, making it difficult to
interpret their functions and extrapolate pre-clinical find-
ings from animal models in model-informed drug devel-
opment (MIDD). Therefore, existing regulatory models
must adapt their frameworks accordingly. MIDD can
reduce ‘financial toxicity’ for patients; however, to be
effective in precision oncology, it must rely on models
developed from existing patient data [33]. In addition,
as we have discussed previously [47], it is important to
consider the sociocultural context, particularly when ap-
plying pharmacogenomic models to autochthonous and
vulnerable patient populations.

5. Conclusion and Future
Perspectives

There is a pressing need to integrate pharmacogenomics
and pharmacogenetics into the pharmacometric healthcare
paradigm at a global level. [33]. In this context, the highly
successful implementation of pharmacogenetics and per-
sonalized medicine in clinical practice in Spain, based
on electronic health records, by Llerena et al. [48], pop-
ularly known as the MedeA (Medicina Personalizada Apli-
cada, Applied Personalised Medicine) initiative, is laud-
able. This can serve as a benchmark and roadmap for im-
plementing similar programs worldwide to improve patient
care. The data on genomics of noncoding RNAs in various
diseases, including but not limited to cancer [49,50], is scat-
tered in the scientific literature, such as the widely-studied

proach, could prove highly beneficial for the patient com-
munity at large and for clinicians in particular. Figure 1
exemplifies a sample workflow for clinical pharmacoge-
nomics. Future precision medicine approaches in cancer
may likely incorporate the role(s) of noncoding RNASs as
drivers of diseases, companion diagnostics, and biomark-
ers for therapeutic intervention.

Clinical Pharmacogenomics (PGx) Workflow

Regulatory bodies

Figure 1: Workflow for clinical pharmacogenomics. Adapted
from [63,64].
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