
Research Article 

Computing&AI Connect 
ISSN: 3104-4719 
2025, Article ID. 2025.0020, Cite as: https://doi.org/10.69709/CAIC.2025.190984 

 

 

An Enhanced Puma Optimized Reinforcement 

Learning Model for Detection of Results 

Anomalies in Higher Education 

Yemi Taiwo
✉,1,*  Oladimeji Ismaila

✉,1  Adebisi Baale
✉,2  Olufemi Awodoye

✉,3  

Isiak Adeyemo
✉,1  Temitope Taiwo

✉,4  Oluwatosin Taiwo
✉,5  Adeoluwa Taiwo

✉,6  

Muibat Ismaila
✉,7  

1 Department of Computer Science, Faculty of Computing and Informatics, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria 
2 Department of Information Systems, Faculty of Computing and Informatics, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria 
3 Department of Computer Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria 
4 Department of Computer Science, College of Science and Technology, Covenant University, Ota 112233, Nigeria 
5 Department of Electrical & Information Engineering, College of Engineering, Covenant University, Ota 112233, Nigeria 
6 Department of Computer Science, Faculty of Information and Communication Technology, Kwara State University, Malete 241103, Nigeria 
7 Department of Mathematics & Computer Science, Fountain University, Osogbo 230211, Nigeria 

 

Article History 

Submitted: April 27, 2025 Accepted: July 27, 2025 Published: August 8, 2025 

 

 

Abstract 

The integrity of a degree depends on the accuracy and validity of examination results, which must be carefully processed and pro- 

tected. The number of students being admitted to Nigerian higher education is rising yearly, making it harder for existing legacy 

infrastructure and the limited workforce to handle the resulting processing abnormalities. This typically leads to a significant delay 

in approving student results for subsequent decision-making. Unauthorized result manipulations is a common occurrence in higher 

education settings, and often serve as precursors to certificate counterfeiting. Given the critical role of exam administration in edu- 

cational management, appropriate technologies are needed to ensure process effectiveness. Ensuring the accuracy and integrity of 

educational certificates and consequently preventing certificate forgery, requires that anomaly detection phase be built into result 

processing systems. Therefore, blockchain technology was integrated with an enhanced Puma-optimized reinforcement learning 

algorithm, to develop a secure and intelligent system for result filtration, storage, and protection. This platform utilized an enhanced 

Puma-optimized reinforcement learning algorithm in a Q-learning architecture for real-time anomaly detection. The resulting archi- 

tecture was further fused with the traditional security features of blockchain technology, specifically its immutable and distributed 

ledger, through design, training, and testing simulations conducted in MATLAB. The improved reinforcement learning agent used a 

quantum superposition mutation operator to enhance the optimization process to achieve high efficiency, filtering out anomalous re- 

sults in real time. To avoid local optima traps, balance exploration and exploitation, and guarantee diversity in the search for optimal 

parameters, the operator introduced controlled randomness. Accuracy, Precision, False Positive Rate, F1-Score, Specificity, Recall, 

and Detection Time were used to compare the performance of the enhanced model with those of traditional reinforcement learning, 

standard Puma-optimized reinforcement learning, and existing state-of-the-art works. With a 0.47% false positive rate, 99.53% 

specificity, 98.11% precision, 97.33% recall, 99.09% accuracy, and 42.38 milliseconds computation time across 800 epochs, the 

model demonstrated a high level of efficiency in detecting anomalies in students’ results. 
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1. Introduction 

The security vulnerabilities of traditional database sys- 

tems, the increasingly volatile information security land- 

scape, and the inadequacy of traditional data security mea- 

sures, necessitated a new, better, and integrated approach 

to data security. Educational institutions are susceptible 

to the security issue, as existing record-keeping systems in 

higher education have left much to be desired, particularly 

in terms of data security [1]. Ideally, a comprehensive 

data security policy requires a careful blend of user educa- 

tion, encryption systems, access control measures, threat 

detection and prevention mechanisms, and physical pro- 

tection. When a pattern that does not show a well-defined 

regular behaviour is observed during the communication 

process or in application data, an anomaly is suspected [2]. 

According to Zimek and Erich [3], abnormality de- 

tection involves identifying unusual data, patterns, obser- 

vations, or occurrences that are suspicious because they 

differ noticeably from the bulk of the data and typical sys- 

tem or user behaviours. Anomalies may include data er- 

rors, structural flaws, or behavioral deviations. They can 

also be in the form of noise, outliers, or novelty. While 

intrusion detection focuses on monitoring network traf- 

fic and devices to identify malicious patterns or events, 

anomaly detection utilizes machine learning algorithms 

to detect behavioral or transactional patterns that deviate 

from the norm. A modern approach to data security in- 

tegrates machine learning for predictive analytics [4] and 

blockchain for decentralized, immutable storage. Various 

techniques have been used to implement data security in 

host-based and distributed applications, ranging from data 

mining to rule-based approaches and presently machine 

learning. The first technique used was data mining, which 

simply involves extracting patterns out of the knowledge 

collected from a robust knowledge base and using those 

patterns to identify abnormalities within related data [5]. 

The rule-based approach creates a database of the signa- 

tures of known abnormalities for use in determining if any 

data transaction or behaviour is abnormal or not. These 

approaches were incapable of identifying new patterns or 

behaviours that use new signatures, since such new signa- 

tures may not be in their knowledge bases. 

Machine Learning (ML) was introduced into the 

data security equation to yield intelligent monitoring sys- 

tems that can learn patterns from the underlying applica- 

tion data, making them capable of detecting any unusual 

patterns or behaviours, and reporting such anomalies. ML 

is increasingly being embraced, particularly in the design 

and implementation of secure and integrated distributed 

information platforms. Several techniques have been used 

to identify anomalies, especially in systems that are host- 

 

based. Distributed systems, which are more complex and 

of intricate topologies, haven’t really benefited from this, 

most likely because of their intricate structural depen- 

dencies. Architectures like K-Nearest Neighbours [6], 

Deep Boltzmann Machine/Generative Adversarial Net- 

works [7], Deep Neural Networks [8], and Deep Belief 

Network [9], are examples of machine learning techniques 

that have been used for implementing both intrusion and 

anomaly detection. 

However, the choice of Reinforcement Learning in 

this study is driven by its growing adoption among re- 

searchers, owing to the significant benefits it offers. A re- 

inforcement learning agent is usually designed to operate 

on the principle of learning from the interaction with its 

environment through the feedback it gets when it takes an 

action on the environment [10], using architectures like 

Q-Learning, Deep Q-Learning, and Model-Based Value 

Estimation etc. Aside from its ability to yield highly accu- 

rate predictions, reinforcement learning agents have faster 

computation time compared to alternative models [11], 

and do not require large labelled datasets, thereby opti- 

mizing the use of resources like storage, primary memory, 

and processor cycles. Aside from being ideal for tasks 

involving a sequential decision-making process, it is also 

innovative as it can yield new solutions to problems, even 

beyond those envisaged by humans, hence it is considered 

the future of machine learning. Since a reinforcement 

learning algorithm does not need retraining to adapt to 

similar environments, it can save time and cost. 

To address the challenge of unauthorized result ma- 

nipulation in educational institutions, researchers have 

proposed using blockchain technology as a more secure 

and reliable alternative to conventional databases for stor- 

ing academic records. Although the technology has ad- 

vanced in other domains, its adoption in education is still 

in its infancy. Aside from the technology’s immutability 

feature, which makes it irrevocable, it is also distribu- 

tive and validated, providing a better solution to the data 

security problem [12,13]. However, advancements in 

Information and Communication Technology brought a 

matching sophistication in the tools and techniques avail- 

able to hackers, making blockchain technology suscep- 

tible to anomalies. The current trend of combining ma- 

chine learning with blockchain technology is a direct ef- 

fort to improve data security through integrated, intelli- 

gent, and proactive systems that can think and act like 

human experts. Research on data security is a continuous 

process as demanded by the ever-dynamic nature of ICT 

and the complexities of its application domains. Such a 

process emphasizes the combination of machine learning 

with other AI-compatible technologies. Irrespective of 

the application domain, machine learning techniques can 
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be developed to scrutinize incoming results to uncover ab- 

normalities, enable real-time detection of unusual results, 

prevent such from being recorded into the blockchain stor- 

age, allow administrators to act swiftly, minimize attacks, 

and reduce the risk of theft of academic records. This 

research aims to develop an integrated platform that com- 

bines blockchain technology with a reinforcement learn- 

ing agent to monitor examination results in higher educa- 

tion institutions. 

Section 2 reviews related studies on result anomaly 

detection. While Section 3 details the specific approaches, 

series is paired with the previous action sequence to retrain 

the HMM, if not flagged or if the analyst clears the flag. 

A more accurate and efficient approach is to model 

the normality in either network traffic behaviours or trans- 

actional data patterns, and use it as a standard to identify 

anomalies, being deviations from the baseline or mod- 

eled normality. Therefore, a number of machine learning- 

based anomaly detection systems have been implemented 

by scholars, each with its strengths and weaknesses. A 

visual analytical system involving the collection of statis- 

tics from Ethereum was proposed in [17]. The model 

techniques, and data utilized for the study, Section 4 presents transformed the collected information into a chronolog- 

and discusses the results of applying both techniques and 

data to the identified problem. Section 5 details the infer- 

ences that were drawn from the entire study, while Sec- 

tion 6 presents authors’ recommendations. 

2. Literature Review 

Notwithstanding the significant progress that has been 

made by researchers on the application of artificial neu- 

ral networks to real-world machine learning problems, 

the use of machine learning-based techniques for detect- 

ing anomalies in examination results within the education 

domain is relatively in its infancy, and as such, existing 

works are also scarce [14]. However, some anomaly detec- 

tion studies in other domains that are considered relevant 

to this work were reviewed. 

A. Existing Studies 

Initial efforts at anomaly detection were focused on 

the activities of insiders. Some studies attempted to under- 

stand why insiders act in certain ways by using theories 

of decision-making and psychological models. For exam- 

ple, authors in [15] provided an approach for modeling 

the insider threat based on behavioral and psychological 

insights. By employing an analytical construct based on 

the model, an analyst can create hypothesis trees defining 

possible insider threats from metrics in several areas, such 

as individual conduct and organizational policy. 

In their study, Rashid et al. [16] took each user’s 

weekly routine to look for variances that may indicate in- 

sider anomalies using a Hidden Markov Model (HMM). 

The HMM is a mathematical tool in which all hidden 

state emit a symbol from a range of possible values before 

changing to a new one. This worked well for modeling 

typical behaviors that are derived via sequential data min- 

ing. Users’ log-likelihood for the new action set is com- 

puted after training the model, so it can represent users’ 

action sequences over a certain amount of time. The se- 

quence is marked as anomalous for further research when 

the log-likelihood score exceeds a threshold. The action 

ical dashboard for visualization, demonstrating that the 

data enabled the detection of the DAO attack by highlight- 

ing anomalous peaks occurring near the corresponding 

date. The objective is to provide a visualization tool that 

can be easily used by non-technical personnel to identify 

potential anomalies in blockchain transactions. 

An anomaly detection system called PRODIGAL 

was introduced, supported by the Defense Advanced Re- 

search Projects Agency (DARPA), which integrates var- 

ious anomaly detection techniques that utilize machine 

learning to support human experts [18]. The need for 

high-speed anomaly detection at the network layer of a 

blockchain was advocated in [19], to prevent malicious 

transactions from getting recorded in the immutable ledger. 

They detailed issues that can result from malicious trans- 

actions being recorded on a blockchain before detection. 

They offered a model that uses a k-means algorithm to 

identify anomalous data, an accelerated process that en- 

sures both anomaly detection and feature extraction are 

done in the GPU memory. The GPU-based model was 

claimed to be 37.1 times faster than traditional CPU-based 

models. It was also compared against those of GPU-based 

models that do not execute feature extraction on a GPU, 

and was reported to be 16.1 times quicker. They asserted 

that so far, entropy in networks has only been studied 

using clustering-based models, and that there is a need 

for improved techniques like reinforcement learning and 

deep learning. 

A dual machine learning architecture was proposed 

in [20], utilizing a One Class Support Vector Machine 

(OCSVM) algorithm to identify anomalies and a K-means 

algorithm for grouping similar anomalies. The study fo- 

cused only on detecting anomalies in bitcoin transactions 

by making a dataset containing a set of normal bitcoin 

transactions as the basis of their model design. Using 

the same bitcoin transaction dataset, they created another 

dataset cataloguing bitcoin transaction-based attacks. 

Blockchain Anomaly Detection (BAD) was sug- 

gested by [21] as a system that gathers data from both the 

orphan and the mainchain blocks. Their approach of stor- 
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ing data about each branch taking place on the blockchain 

could make the large volume of data generated difficult 

to manage. Also, it requires modification of the protocol 

since its design does not allow the storage of information 

concerning orphan or branch blocks. Authors in [22] pro- 

posed an encoder-decoder model, which employed the 

data gathered by a blockchain’s operations, to identify 

anomalies in the underlying network traffic that may in- 

dicate an impending or ongoing attack. The research de- 

termines a set of attributes that may be calculated from 

the blockchain logs to characterize the system’s state at 

each time step. They also added an unsupervised neural 

architecture that can calculate a score that indicates the 

extent of anomaly displayed by a time series, indicating 

the network’s condition in a given period. The main draw- 

back with their approach was the limited events to classify 

because of the limited amount of blockchain transactions 

that were used for training the model in an unsupervised 

approach. For instance, their model highlighted a serious 

anomaly on day 1255, which was a few days after the ac- 

tual attack. Also, their approach utilized block size and 

its associated features as the base dataset, by excluding 

data from other sources like servers, operating systems, 

and applications. This limited the model’s effectiveness 

in early detection of certain attack types. 

A Feed-Forward Neural Network model was pro- 

posed by [23] for the detection of result anomalies in 

higher education. The proposed architecture has two in- 

put variables corresponding to continuous assessment and 

examination scores, a hidden layer, and two output lay- 

ers of continuous assessment and examination anomalies, 

respectively. The study utilized a weighted continuous 

assessment value as a benchmark for detecting abnormal 

data points, categorizing them into the rejected region. An 

object-oriented analysis and design approach was adopted 

for defining either the static or dynamic context of the 

model, and for designing the system architecture into lay- 

ers and subsystems. 

An architecture that collects Bitcoin transactions 

data via Google for use as a dataset was proposed in [24], 

with sender names as captions. Deep features are ex- 

tracted from transactions in the dataset, and label refine- 

ment is done in addition to the creation of a suggestion 

list. Identification of unusual patterns or behaviour was 

achieved using a supervised Support Vector Machine net- 

sion to the data pre-processing layer and eventual storage 

in blockchain-secured clouds. The model proposed in 

the study uses machine learning algorithms, and adopts 

blockchain for the storage of the dataset in order to ensure 

the security of both trained models and pre-processed data. 

Further, authors in [26] used an integrated architec- 

ture of Long Short-Term Memory (LSTM), Gated Recur- 

rent Units (GRU), and a blockchain to create a privacy- 

preserving anomaly detection framework. It used blockchain 

to safely transmit data to a distributed, decentralized cloud 

server for local model training using federated learning. 

Focusing on the NSL-KDD dataset, the study used vari- 

ous storage techniques to ensure data safety and confiden- 

tiality, using blockchain, federated, and hybrid learning 

to solve privacy concerns and promote free collaboration. 

Using federated learning leaves the training open to infer- 

ence attacks through data leakage. The efficiency of the 

training process could be hampered by latency in network 

communication, particularly during transmission and ag- 

gregation of model updates. 

GraphAEAtt, a self-encoder system with an atten- 

tion mechanism and, deep learning framework, was intro- 

duced in [27] for blockchain abnormal transaction detec- 

tion. It comprises an attribute autoencoder and a struc- 

tural autoencoder that work together to jointly learn node 

and attribute feature vector representations, with an at- 

tention mechanism to learn the correlation between adja- 

cent nodes. After the observed raw node attributes are 

first transformed into a vector representation of the low- 

dimensional space by the structural encoder, all surround- 

ing nodes’ embeddings are combined to create the node 

integration using the shared attention technique. The ob- 

served attribute data is then mapped into a hypothetical 

attribute embedding form by the attribute encoder using a 

multi-layer perceptron. The adjacency matrix is recon- 

structed using a structure decoder, while the attribute 

matrix is reconstructed using an attribute decoder, after 

which the objective function for the model training is 

measured as the nodes’ reconstruction error. The recon- 

struction inaccuracy of the nodes is used for the anomaly 

detection. 

B. Research Gap 

Previous studies focused on supervised learning al- 

gorithms optimized using learned optimizers [28], de- 

work to classify blockchain transactions into normal/anomalys, pite the potential benefits of developing new adaptive 

and then use the suggestion list for the tagging. A frame- 

work that employed Support Vector Machine (SVM) and 

K-Nearest Neighbour (KNN) algorithms for detecting in- 

terference in a blockchain-based network was proposed 

by [25]. The study utilized IoT technology to collect data 

from several cloud environments, for onward transmis- 

optimizers [29]. This has, over time, resulted in mod- 

els with high computation (detection) time, low accuracy, 

and high false alarms. In addition, the creation and train- 

ing of learned optimizers typically requires a significant 

amount of computation and human labour, due to their in- 

tricate neural architecture and inclusion of multiple hand- 
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designed input features. Also, learned optimizers have 

been found to perform poorly on even simple reinforce- 

ment learning tasks [28,30]. Although learned optimizers 

were able to detect a number of abnormalities in data, their 

effectiveness at detection needs to be improved. Such im- 

provement efforts or research should focus on enhancing 

existing deep learning techniques or developing new re- 

inforcement learning techniques [31,32]. This study ad- 

dresses the above shortcomings by formulating an adap- 

tive optimizer to enhance a reinforcement learning-based 

anomaly detection architecture. 

3. Methods 

In addition to formulating an enhanced Puma optimized re- 

inforcement learning algorithm (EPORLA), a blockchain 

network was built to provide an integrated, intelligent, and 

adaptive examination results filtering system that is also 

capable of predictive analytics. The enhanced Puma opti- 

mizer was formulated in a manner that it returns the opti- 

mal set of values for the reinforcement learning hyperpa- 

rameters within a few iterations. The enhanced reinforce- 

ment learning algorithm and the blockchain network were 

designed in MATLAB (R2023a). Alternatively, these two 

main components can also be simulated using either Java 

or Python, taking advantage of their rich toolboxes and 

libraries. 

The effectiveness of the developed model in filter- 

ing examination results of anomalies was measured us- 

ing Accuracy, Precision, Recall, False Positive Rate, F1- 

Score, Specificity, and Computation Time. Model per- 

formance, findings, and experimental data are discussed, 

while findings and experimental data were also presented. 

The framework and flowchart detailing the operational 

components and flow of activities in the result anomaly 

detection system are illustrated in Figures 1 and 2, respec- 

tively. 

A. Dataset 

Sample examination results of about 6238 students 

across 100 to 500 levels of various academic programmes 

were obtained from the record office of Ladoke Akintola 

University of Technology, Ogbomoso. 

B. Data Preprocessing 

The data used for training and validating the Puma- 

optimized reinforcement learning agent were preprocessed 

to ensure feature alignment, eliminate ambiguity, and pro- 

vide the algorithm with clean, noise-free input. Prepro- 

cessing was necessary because the availability of required 

features in a dataset can assist in closing the gap between 

academic research and real-world implementation of ma- 

chine learning-based applications, by enabling a more rig- 

orous and comprehensive evaluation of such systems [33]. 

Also, the performance of any machine learning algorithm 

is heavily dependent on the quality of the data. 

(1) Data Merging and Integration: Since raw examina- 

tion results were obtained for students at different 

levels of various academic programmes, there were 

multiple Comma Separated Values (CSV) files con- 

taining datapoints corresponding to sample exami- 

nation results. Each CSV file contains sample ex- 

amination results for all students taking any partic- 

ular course at any particular level of a programme. 

For example, the results of all 100 Level Computer 

Science students in Data Structure (CSC 102) were 

kept in a separate CSV file. The initial raw dataset 

for the study was created by merging all data points 

from the various acquired examination result CSV 

files into a single consolidated CSV file. 

(2) Data Reduction: In this phase, emphasis was placed 

on dimensionality reduction by deleting from the 

raw CSV datafile features considered less important 

to the task at hand. First, doing this ensures the RL 

algorithm, like other machine learning architectures, 

works efficiently with fewer features in the final 

dataset, avoiding the curse of dimensionality. Sec- 

ond, it helped ensure a coherent and understandable 

model due to a smaller number of features, avoiding 

structural complexity. Third, the reduced number of 

features allowed the RL model to optimize the use 

of computing resources like secondary storage, pri- 

mary memory, and processor cycle time. Features 

such as Student Name, Course Description, Credit 

Unit, Semester, etc., were manually deleted, leav- 

ing Matric, Level, Course Code, Score, and Date 

Timestamp. 

(3) Data Cleaning and Insertion: Denoising the reduced 

data file is necessary to present the learning algo- 

rithm with a clean dataset. For example, columns 

with missing values were treated by computing the 

Missing Value Ratio (Rm). An entire feature (col- 

umn) is removed from the dataset if the missing rate 

(Rm) is significantly high; otherwise, missing values 

are imputed using the mean, median, or mode of the 

respective column. To ensure effective model train- 

ing and validation, at least a row of anomalous re- 

sults was manually inserted into the dataset for ev- 

ery ten rows of non-anomalous results. Specific ac- 

tivities carried out to achieve the ideal dataset are as 

follows: 

i. One-valued columns (i.e., those with all zero val- 

ues) were deleted. Columns with zero values throughout. 

Such columns do not have any influence on the output. 
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Figure 1: Framework of the RL-Based Results Anomaly Detection Model. 

 

ii. Also, one-valued rows (rows with zero values 

throughout) were deleted. 

iii. Datapoints (rows) with negative values through- 

out were also deleted. 

iv. Missing values were treated by computing the 

Missing Value Ratio for affected columns. 

v. Columns (features) already known to be irrele- 

vant to the task at hand were removed. 

vi. A total of 568 anomalous samples were gen- 

erated using MATLAB’s randn() function, based on the 

mean and standard deviation of the normal data. An offset 

was applied to shift the mean, combined with numeric as- 

signment, to ensure that the generated samples deviated by 

several standard deviations from the normal mean, thereby 

producing extreme anomalies. Thereafter, every ten rows 

of normal results have one anomalous sample manually 

inserted from the generated anomalous samples. 

vii. A column tagged “Status” was created as the 

last column to serve as the label for each datapoint. 

(4) Data Splitting: The resultant dataset from (3) above 

was divided into two samples in a ratio of 7:3 corre- 

sponding to training and validation subsets, respec- 

tively, using a random subsampling cross-validation 

method. 

C. Components Initialization 

The first major phase in implementing the proposed 

examination results anomaly detection system involves 

the initialization of key blockchain and reinforcement 

learning components. The blockchain network was ini- 
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Figure 2: RL-Based Result Anomaly Detection Flowchart. 

https://scifiniti.com/
https://scifiniti.com/journals/computingai-connect


2025, Vol. 2, Article ID. 2025.0020 
https://doi.org/10.69709/CAIC.2025.190984 

Computing&AI Connect Taiwo et al. 

8 

 

 

n 

i 

X → Xi + λ · 
(
X  − Xi

) 
+ β · rand 

i n j j 

i i 

j=1 

 
 

 

tialized by defining nodes and a Proof-of-Authority (PoA) 

consensus mechanism. Smart contracts were also de- 

signed to provide a mechanism for validating examina- 

tion results. The genesis block, which carries no real- 

world transactional data, was defined as a store of the 

foundational rules or generic block format, from which 

successive data blocks in the blockchain propagate. Data 

block configuration was done to store only sensitive data 

fields of students’ examination results. Successive data 

blocks were cryptographically linked together using the 

SHA-256 hashing algorithm to form an immutable ledger. 

The blockchain provides the required decentralized stor- 

age infrastructure, transparency, and trust for the exami- 

 
 

cant improvement in fitness scores, with the model having 

reached convergence. Parameter optimization starts with 

the algorithm generating a random set of N populations Xi, 

including the discount factor, learning rate, and Q-values. 

 

Xi = {Q(S, A), α, γ} (1) 

Computation of the fitness evaluation score—F(Xi), 

is done for the individual combination of parameters Xi 

by comparing the ground truth with the prediction using a 

loss function. 

F(X ) = − 
1 ∑ 

l(yˆ , y ) (2) 
 

 

forcement learning algorithm is initialized by first defin- 

ing core components like States, Actions, Rewards, and 

the Q-table. This setup enables the RL agent to dynam- 

ically learn optimal strategies for scrutinizing incoming 

data to identify any abnormality. The RL environment 

and operational variables were defined as follows: 

i. S: set of states that are equated to stages of re- 

sult verification, such as “Pending Verification”, 

“Valid Entry”, or “Malicious Entry”. 

ii. A: actions set that includes operations such as 

“Store Result” or “Reject Result”. 

iii. R(S, A): The reward function that incentivizes 

correct abnormality detection and penalizes detec- 

tion errors. 

iv. Q(S, A): Q-table that the RL agent utilizes to ini- 

tialize state-action pairs with random values. 

v. Sets hyperparameters such as the learning rate (α) 

and discount factor (γ). 

D. Model Optimization 

The reinforcement learning algorithm was positioned 

for maximum efficiency and accuracy of detection by en- 

suring that required adjustments to its parameters and the 

eventual determination of the optimal set of parameters 

that guarantees the lowest possible loss were done using 

Enhanced Puma Optimization Algorithm (EPOA) that is 

integrated with Quantum Superposition Mutation (QSM). 

EPOA-QSM provides an intelligent and completely 

automatic phase switching mechanism for achieving a bal- 

ance between exploration and exploitation, enhances ex- 

ploration by incorporating quantum-inspired randomness, 

and prevents solutions from settling into suboptimal local 

minima. It ensures the model is trained most efficiently by 

selecting an optimal set of parameters that guarantees the 

shortest possible training time; an essential service as the 

choice of hyperparameters can greatly impact the model’s 

performance. The iterative process of parameter optimiza- 

tion continues until fitness evaluation indicates no signifi- 

where l( ŷj , yj) = error between predicted and actual label. 

The fitness score is useful for determining how ac- 

curate the chosen parameters are in aiding the model’s ef- 

fectiveness in detecting malicious results. To prevent the 

process from converging to a local optimum, which may 

happen when only one particular phase is repeatedly se- 

lected over many iterations, the phase selection was di- 

versified. Such diversity was achieved through the con- 

trolled randomness introduced into the optimization pro- 

cess by the integrated QSM operator. EPOA-QSM also 

ensures that any phase that has not been selected in many 

iterations of the optimization process also stands a chance 

of being selected. As a result, EPOA-QSM was able to 

avoid stagnation, make provision for automatic parame- 

ters selection and continuously improve solution quality, 

ensuring a more robust reinforcement learning model. 

For t → 1 to T : 
Exploration (Quantum Enhanced Prey Search) 

Xnew → Xi + r1 · 
(
X* − Xi

) 
+ r2 · (Xj − Xk) + QSM (Xi) 

Exploitation (Quantum-Inspired Hunting) 

 
new * 
i 

·(Xbest neighbor − Xi) + QSM (Xi) 
 

Parameters Selection 

 

 

Xnew,  if F (Xnew) > F (Xi) 

Xi, otherwise 

E. Model Training 

The training phase commenced immediately after 

the reinforcement learning parameters were optimized. In 

the course of training, optimized parameters were applied 

to real-world examination results, with the EPORLA ob- 

nation results system. The operation of the enhanced rein- 

Xi → 

{ 
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serving the current state for each transaction, and then de- 

ciding on an action based on either exploitation (learned Q- 

values) or exploration. Thereafter, reward R (St, At) was 

estimated based on the corresponding feedback from the 

action taken. The model over time improved its decision- 

making by utilizing the feedback loop to update the Q- 

values. 

 
Q(St, At) → Q(St, At)+ 

α ·  R(S , A ) + γ · maxQ(S , A′) − Q(S , A ) 
(3) 

The AES algorithm, because of its low technical require- 

ments, which make it a faster and more efficient encryp- 

tion algorithm for handling massive data than the RSA, 

and also because of its relative flexible implementation 

on consumer computing devices like laptops and smart- 

phones, was used for encrypting the potentially enormous 

blocks of data the blockchain is expected to store as it 

grows. 

I. Model Implementation 

The developed technique was implemented in MAT- 
 

 

EPORLA iterative optimization, training, blockchain 

integration, and anomaly detection procedure is outlined 

in Algorithm 1. 

F. Anomaly Detection 

The reinforcement learning model makes decisions 

regarding anomalies based on the training it has received 

in subsection E above. The incoming result is passed to 

EPORLA, which scrutinizes it to determine whether it is 

of the expected pattern, as may be inherent in the bulk of 

the examination results, or a deviation. If considered to 

be of the expected pattern, it is propagated to the partici- 

pating nodes for validation. However, if EPORLA consid- 

ers such an incoming result to be suspicious or abnormal, 

it flags it as anomalous and prevents it from being propa- 

gated to the participating nodes. Such examination results 

data is submitted for further review. This approach helps 

ensure that participating nodes do not waste available lim- 

ited computing resources to validate malicious data. 

G. Blockchain and RL Integration 

With the blockchain class and its methods, tasks 

such as the addition of data blocks, chain validation, and 

proof of authority computation were accomplished. Par- 

ticipating nodes on the blockchain network were responsi- 

ble for validating incoming examination results, utilizing 

the Proof of Authority (PoA) consensus mechanism for 

ensuring that agreement is reached before recording them 

to the blockchain’s ledger. 

H. Security and Privacy Protection 

The blockchain component was designed as a pri- 

vate blockchain with its access control mechanism tied 

to the university’s main portal access control policies that 

must have been defined at both the user and module lev- 

els. The EPORLA component of a university result pro- 

cessing system can only be accessed by lecturers or in- 

structors uploading student results. Also, successive data 

blocks were cryptographically linked together using the 

SHA-256 hashing algorithm to form an immutable ledger. 

and accuracy. The Reinforcement Learning Toolbox was 

used to develop and train the reinforcement learning model 

for optimizing result filtration. Additionally, the Blockchain 

Toolbox was integrated to simulate decentralized ledger 

operations for secure and immutable storage of examina- 

tion results, and the Optimization Toolbox was deployed 

in support of the Puma-based optimization process to im- 

prove decision-making and transaction efficiency. The 

system was implemented on a 64-bit Windows 11 machine 

with a minimum Intel Core i7 processor, 16 GB RAM, and 

an NVIDIA GPU for accelerated computations. 

J. Deployment, Maintenance, and User Training 

Designed as a full-fledged point anomaly detection 

tool, the model is not a standalone result processing sys- 

tem on its own. It can only be deployed as an integrated 

tool or a modular component for anomaly detection within 

a larger result processing system. A pilot implementation 

approach can be adopted by institutions deploying the tool 

to evaluate its effectiveness and compatibility with exist- 

ing result processing legacy infrastructure. With the con- 

struction of blockchain data blocks from only a sensitive 

and limited number of fields, in addition to the impressive 

computation time of 42.38 ms, EPORLA is considered 

scalable and ideal for real-time deployment. The user’s 

contact with the model is limited to a few selection but- 

tons on the main GUI. Its use requires minimal training, 

including data upload, classifier selection, parameter set- 

tings (such as training percentage and number of epochs), 

and specifying the output data file destination. As an inte- 

grated tool utilizing the base examination results as its op- 

erational data, the model requires no special maintenance, 

more so that it renews itself on the go, being a reinforce- 

ment learning-based system. 

K. Model Evaluation 

The data for this study is of high class-imbalance 

since the bulk of it is of normal results, while a smaller per- 

centage of it was configured to be abnormal results. This 

makes evaluation metrics such as Confusion Matrix, Ac- 

curacy, Precision, False Positive Rate (FPR), Specificity, 

LAB R2023a with multiple toolboxes to ensure efficiency 
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Algorithm 1: Enhanced RL-Based Examination Results Anomaly Detection 
 

//Input: Results Dataset: D = {R1, R2, . . . , Rn}, where Ri = {Matric, Level, Course Code, Score, DateTimeStamp}. 

Blockchain Network: B = { Nodes, Consensus, Smart Contracts }. 

Optimization Parameters: Population size (N), MaxIteration, 
exploration factor (δexplore ), exploitation factor (δexploit ). 

t t 

RL Parameters: State space (S), action space (A), reward function (R), learning rate (α), discount factor (γ) 
//Output: Optimized RL parameters, blockchain of results, result status 

Create network: Define nodes and consensus mechanism, 

Develop smart contracts for validation rules and block storage, 

Create Genesis block: Initialize blockchain and validation rules. 

Define RL Variables: Actions as set A = {“Valid “, “Reject”} 

State as set S = {“Pending”, “Valid”, “Malicious”} 

Reward Function as R(S, A) 

Set initial values for all state-action pairs: Q(S, A). 
Set hyperparameters: learning rate (α), discount factor (γ). 
Generate N random solutions, Xi → {Q(S, A), α, γ} . 
Compute the fitness of each Xi 

Fitness X 1 
∑ 

l
(
y
ˆ  

y 
)
. 

for t → 1 to MaxIteration 
Exploration phase: Calculate exploration adjustment 

explore 
t → 1 − αexplore , 

Xnew → Xi + G · (Xa − Xb) + G · (((Xa − Xb) − (Xc − Xd)) + (Xe − Xf)), 
Exploitation Phase: Adjust solutions using 

new 
i → Xi + δexploit 

· (Xbest − Xi) 
set parameters (Q(S, A), α, γ). 

Training Phase: Observe state (St) for result ( TXi) 
Choose action (At) using 

argmaxAQ(St, A) or exploration. 

Calculate reward (R(St, At)). 

Update Q-values using Q(St, At) → Q(St, At) + α · R(St, At) + γ · max Q St+1, A’ − Q(St, At) 
A’ 

Blockchain Integration: if RL approves result (TXi) then 

validate and store TXi into blockchain 

else 

report TXi as anomalous and log it for further review 

endif 

if no significant improvement in fitness score, then 

t → MaxIteration 

endif 

next t 

End 

 

F1-Score, and Recall ideal for evaluating the performance 

of the system. These metrics were used to measure the sys- 

tem’s effectiveness and suitability in identifying transac- 

tional abnormalities in examination results. Considering 

the huge amount of transactional data that can be gener- 

ated in a college, these metrics were used to analyze how 

efficiently the system is in detecting anomalies like un- 

usual data size, wrong data type, and abnormal data pat- 

tern. Also, EPORLA’s convergence rate was compared 

with that of the standard Puma-optimized reinforcement 

learning algorithm (PORLA). 

4. Results and Discussion 

The application of traditional Reinforcement Learning 

(RL), Puma Optimized Reinforcement Learning Algo- 

rithm (PORLA), and Enhanced Puma Optimized Rein- 

forcement Learning Algorithm (EPORLA) to real-time 

detection of anomalies in students’ examination results 

was effectively demonstrated through a custom Graphical 

User Interface (GUI), as shown in Figures 3 and 4. This 

GUI enables users to load student results data, select clas- 

sifiers, train the model, and visualize performance and 

blockchain storage. The dataset contained 6238 records, 

δ 

X 
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Figure 3: Graphical User Interface (Loading and Training). 

 

including matriculation number, programme level, course 

code, scores, and timestamp. 

To ensure robust training, 70% of the dataset was 

allocated for training and 30% for testing using the ran- 

dom sub-sampling cross-validation method, mitigating 

overfitting and improving the generalization ability of the 

models. In Figure 3, the initial stage of the GUI show- 

cases the process of data input, classifier selection, and 

parameter settings like training percentage and number 

of epochs. After loading the dataset, the GUI displays 

a table of original results and sample scores. Once the 

training and validation process is initiated, the model at- 

tempts to identify patterns and anomalies based on the 

score distributions. Figure 4 presents the enhanced model 

evaluations using RL, PORLA, and EPORLA under in- 

creased training epochs. The Puma optimizer-enhanced 

RL model trained with 800 epochs achieved the best per- 

formance based on the evaluated metrics used, showing 

improvement in the precision-recall trade-off due to the 

Puma optimizer’s balance of exploration and exploitation. 

These improvements reflect EPORLA’s ability to adap- 

tively fine-tune learning parameters, enhancing anomaly 

detection in a dynamic academic dataset. The perfor- 

mance table within the GUI gives a side-by-side com- 

parison of classifier performance metrics across different 

epochs. Furthermore, the integration of blockchain as an 

unalterable storage system, as illustrated in the blockchain 

overview section of the GUI in Figure 4, ensures that the 

identified anomalies and validated records are securely 

logged. 

Each transaction block is timestamped and hashed, 

representing an immutable audit trail for examination re- 

sult validation. This integration not only strengthens data 

integrity but also fosters transparency and trust in aca- 

demic institutions. The system enables administrators to 

track alterations and verify records without compromise. 

Ultimately, the GUI offers a seamless and intelligent plat- 

form for real-time anomaly detection and secure result 

management using a hybrid of advanced machine learning 

and blockchain technologies. The Puma Optimizer (PO) 

was applied in this study to fine-tune the hyperparameters 

of the reinforcement learning model, specifically target- 

ing learning rate, discount factor, exploration rate, and 

number of episodes. Table 1 presents the results from 

30 iterations of the optimization process, with each row 

indicating a unique parameter combination and the corre- 

sponding objective function value. While several param- 

eter sets yielded moderately high performance, the best 

result emerged at iteration 23, where the learning rate was 

0.029, the discount factor was 0.979, the exploration rate 

was 0.106, and the number of episodes was 340. This con- 

figuration recorded the lowest objective function value of 

0.017, confirming it as the optimal hyperparameter com- 

bination selected by Puma Optimizer (PO). Despite the ef- 

fectiveness of Puma optimizer, some iterations exhibited 

high objective values (like 0.944 at iteration 29), indicat- 

ing inconsistency in convergence. 
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Figure 4: Graphical User Interface (Validation and Detection). 

 

 

Table 1: Selection of Optimal RL Parameters using the standard Puma Optimizer. 
 

Iteration 
Learning 

Discount Exploration Number of Objective Best (PUMA 
 Rate Factor Rate Episodes Function Optimizer) 

1 0.038 0.915 0.123 712 0.416 No 

2 0.095 0.832 0.089 561 0.758 No 

3 0.073 0.812 0.250 742 0.237 No 

4 0.060 0.980 0.113 868 0.086 No 

5 0.016 0.983 0.091 104 0.297 No 

6 0.016 0.954 0.167 317 0.170 No 

7 0.006 0.858 0.051 602 0.930 No 

8 0.087 0.819 0.243 866 0.810 No 

9 0.060 0.930 0.032 497 0.637 No 

10 0.071 0.884 0.296 970 0.873 No 

11 0.002 0.823 0.234 894 0.806 No 

12 0.097 0.894 0.068 492 0.195 No 

13 0.083 0.807 0.012 306 0.894 No 

14 0.021 0.973 0.246 114 0.544 No 

15 0.018 0.849 0.215 957 0.809 No 

16 0.018 0.926 0.221 653 0.897 No 

17 0.030 0.859 0.234 991 0.325 No 

18 0.053 0.899 0.031 560 0.119 No 

19 0.043 0.904 0.114 790 0.236 No 

20 0.029 0.835 0.044 674 0.433 No 

21 0.061 0.984 0.260 963 0.820 No 

22 0.014 0.947 0.191 842 0.862 No 

23 0.029 0.979 0.106 340 0.017 Yes 

24 0.037 0.970 0.028 663 0.516 No 

25 0.046 0.914 0.100 195 0.423 No 

26 0.079 0.975 0.104 999 0.230 No 

27 0.020 0.817 0.222 833 0.129 No 

28 0.051 0.837 0.195 584 0.344 No 

29 0.059 0.809 0.267 506 0.944 No 

30 0.005 0.862 0.147 330 0.330 No 
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Table 2: Selection of Optimal RL Parameters using the Enhanced Puma Optimizer with QSM. 
 

Iteration 
Learning 

Discount Exploration Number of Objective Best (Enhanced PUMA 

 Rate Factor Rate Episodes Function + QSM) 

1 0.038 0.915 0.123 712 0.417 No 

2 0.095 0.832 0.089 561 0.564 No 

3 0.073 0.812 0.250 742 0.294 No 

4 0.060 0.980 0.113 868 0.778 No 

5 0.016 0.983 0.091 104 0.770 No 

6 0.016 0.954 0.167 317 0.205 No 

7 0.006 0.858 0.051 602 0.400 No 

8 0.087 0.819 0.243 866 0.244 No 

9 0.060 0.930 0.032 497 0.231 No 

10 0.071 0.884 0.296 970 0.034 Yes 

11 0.002 0.823 0.234 894 0.490 No 

12 0.097 0.894 0.068 492 0.405 No 

13 0.083 0.807 0.012 306 0.046 No 

14 0.021 0.973 0.246 114 0.227 No 

15 0.018 0.849 0.215 957 0.727 No 

16 0.018 0.926 0.221 653 0.196 No 

17 0.030 0.859 0.234 991 0.120 No 

18 0.053 0.899 0.031 560 0.394 No 

19 0.043 0.904 0.114 790 0.789 No 

20 0.029 0.835 0.044 674 0.197 No 

21 0.061 0.984 0.260 963 0.539 No 

22 0.014 0.947 0.191 842 0.611 No 

23 0.029 0.979 0.106 340 0.194 No 

24 0.037 0.970 0.028 663 0.584 No 

25 0.046 0.914 0.100 195 0.297 No 

26 0.079 0.975 0.104 999 0.508 No 

27 0.020 0.817 0.222 833 0.509 No 

28 0.051 0.837 0.195 584 0.431 No 

29 0.059 0.809 0.267 506 0.077 No 

30 0.005 0.862 0.147 330 0.669 No 

 

To further enhance the tuning process, an Enhanced 

Puma Optimizer with Quantum Superposition Mutation 

(EPO-QSM) was employed, as shown in Table 2. This hy- 

brid approach introduced quantum-inspired diversity into 

the optimization strategy, improving global exploration 

and local refinement. 

The optimization was repeated across 30 iterations 

using the same hyperparameter space, and iteration 10 was 

identified as the best configuration, yielding an objective 

function value of just 0.034. This configuration included 

a learning rate of 0.071, a discount factor of 0.884, an ex- 

ploration rate of 0.296, and a total of 970 episodes. The re- 

sults from EPO-QSM indicated more stable and consistent 

improvements in objective function values across various 

iterations compared to the conventional PO. 

Comparatively, EPO-QSM outperformed PO in achiev- 

ing optimal reinforcement learning hyperparameters for 

the anomaly detection task. While both optimizers suc- 

ceeded in identifying high-performing parameter sets, EPO- 

QSM demonstrated better consistency and lower overall 

objective values across more iterations, confirming the 

advantage of integrating quantum superposition mutation. 

This improvement can be attributed to EPO-QSM’s abil- 

ity to escape local optima and better explore the solution 

space. The application of EPO-QSM not only refined 

the learning parameters but also contributed to the im- 

proved performance metrics observed in the reinforce- 

ment learning-based anomaly detection model. Conse- 

quently, this advanced optimization approach facilitates 

more effective real-time analysis of examination results, 

resulting in a highly accurate and reliable model. 

A. Performance of the Traditional RL 

In Table 3, evaluation across different training 

epochs—200, 400, 600, and 800—revealed a slight de- 

cline in True Positives (TP) from 346 to 343, while False 

Negatives (FN) increased from 28 to 31. Meanwhile, 

False Positives (FP) decreased consistently from 35 to 28, 

and True Negatives (TN) increased from 1462 to 1469, 

indicating the model’s growing accuracy in identifying 

legitimate records. This gradual shift in the confusion 
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matrix components highlighted the model’s improved dis- 

crimination power as the training deepened. 

Table 3: Performance Evaluation Results based on RL. 
 

Epochs 200 400 600 800 

TP 346 345 344 343 

FN 28 29 30 31 

FP 35 33 31 28 

TN 1462 1464 1466 1469 

FPR 2.34 2.20 2.07 1.87 

SPEC (%) 97.66 97.80 97.93 98.13 

RECALL (%) 92.51 92.25 91.98 91.71 

PREC (%) 90.81 91.27 91.73 92.45 

ACC (%) 96.63 96.69 96.74 96.85 

F1-Score (%) 94.11 94.42 94.73 95.21 

Time (ms) 22.23 41.27 76.21 97.04 

 

A deeper examination of the false positive rate (FPR) 

confirmed the model’s increasing reliability. The FPR dropped 

from 2.34% at 200 epochs to 1.87% at 800 epochs, show- 

ing a reduction in incorrect anomaly detections among valid 

records. This was complemented by an increase in 

specificity—from 97.66% to 98.13%—indicating the sys- 

tem’s stronger ability to recognize true negatives. How- 

ever, there was a marginal drop in recall, from 92.51% to 

91.71%, suggesting a slight reduction in the model’s sen- 

sitivity to identifying all anomalies. Despite this, the con- 

sistently high recall values across all epochs affirmed the 

model’s ability to identify the majority of actual anoma- 

lous results. 

In terms of precision, there was a positive upward 

trend, increasing from 90.81% at 200 epochs to 92.45% 

at 800 epochs. This implied that the proportion of true 

anomalies among all flagged cases improved with ex- 

tended training. Consequently, the F1-Score, which bal- 

ances precision and recall, also improved steadily—from 

94.11% to 95.21%—indicating overall enhanced classifi- 

cation performance. The accuracy of the RL model im- 

proved slightly, increasing from 96.63% to 96.85%, high- 

lighting a reliable overall detection system for anomalies 

in real-time examination results, as shown in Table 3. 

Despite the improved performance metrics, detec- 

tion time increased significantly with the number of epochs, 

from 22.23 ms at 200 epochs to 97.04 ms at 800 epochs. 

While the accuracy and F1-score benefited from longer 

training durations, the trade-off was evident in real-time 

application contexts where speed is critical. The slight re- 

duction in recall, despite higher precision, also suggested 

the need to balance between identifying all anomalies and 

minimizing false alarms. Nonetheless, the reinforcement 

learning model remained effective and dependable for 

real-time anomaly detection, especially when accuracy 

was prioritized over processing speed. These findings 

demonstrated the impact of careful hyperparameter selec- 

tion on the overall success of RL-based intelligent systems 

in dynamic academic environments. 

B. Performance of PORLA on Anomaly Detection 

The Puma Optimized Reinforcement Learning Algo- 

rithm (PORLA) demonstrated significant improvements 

in both accuracy and efficiency for real-time anomaly de- 

tection in examination outcomes. The Puma Optimizer 

(PO) was instrumental in selecting optimal hyperparam- 

eters such as learning rate, discount factor, exploration 

rate, and number of episodes, which significantly influ- 

enced the performance of the RL model. From 200 to 800 

epochs, True Positives (TP) remained high, slightly de- 

creasing from 358 to 355, while False Negatives (FN) rose 

marginally from 16 to 19. Similarly, False Positives (FP) 

decreased from 24 to 16, indicating fewer incorrect detec- 

tions, while True Negatives (TN) increased from 1473 to 

1481. These trends in the confusion matrix suggested that 

PORLA maintained a high level of consistency in accu- 

rately identifying anomalies with minimal misclassifica- 

tion. 

In terms of the false positive rate (FPR), PORLA 

exhibited a consistent decline from 1.60% at 200 epochs 

to just 1.07% at 800 epochs, underscoring its increasing 

ability to accurately disregard non-anomalous data. Cor- 

respondingly, the specificity improved from 98.40% to 

98.93%, indicating enhanced ability in detecting genuine 

results without labelling them as anomalous. While there 

was a slight decrease in recall from 95.72% to 94.92%, 

it remained above 94%, showing strong sensitivity to ac- 

tual anomalies. The high recall values coupled with low 

FPR confirmed the model’s strong generalization and bal- 

anced detection capabilities. These results underscored 

the robustness of PORLA in maintaining accuracy even 

as model training became deeper and more refined, as de- 

fined in Table 4. 

Table 4: Evaluation Results based on PORLA. 
 

Epochs/Metric 200 400 600 800 

TP 358 357 356 355 

FN 16 17 18 19 

FP 24 21 18 16 

TN 1473 1476 1479 1481 

FPR 1.60 1.40 1.20 1.07 

SPEC (%) 98.40 98.60 98.80 98.93 

RECALL (%) 95.72 95.45 95.19 94.92 

PREC (%) 93.72 94.44 95.19 95.69 

ACC (%) 97.86 97.97 98.08 98.13 

F1-Score (%) 96.00 96.48 96.96 97.28 

Time (ms) 18.38 37.31 55.06 73.66 
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Precision also showed a steady increase from 93.72% 

to 95.69% as epochs progressed, indicating that most 

flagged results were truly anomalous. This enhancement 

in precision is significant for real-time anomaly detection, 

as it reduces false alarms and builds users’ trust in the sys- 

tem. The accuracy of the PORLA system steadily climbed 

from 97.86% to 98.13%, reflecting its comprehensive 

correctness across all classifications. More importantly, 

the F1-score, which harmonizes precision and recall, in- 

creased from 96.00% to 97.28%, marking a consistent 

improvement in overall performance. These performance 

metrics collectively validated the effectiveness of Puma 

optimizer-based hyperparameter tuning in optimizing re- 

inforcement learning for critical real-time applications. 

Finally, in terms of detection speed, the PORLA system 

remained efficient with detection time rising from 18.38 

ms at 200 epochs to 73.66 ms at 800 epochs—still faster 

compared to other models with similar training lengths. 

While there was a natural increase in time due to 

deeper learning, it remained within an acceptable range for 

real-time deployment. The trade-off between increased 

accuracy and moderate increases in computation time is 

favourable, especially in sensitive systems like academic 

result anomaly detection. The consistent improvements 

across metrics suggested that PORLA, guided by Puma, 

optimized reinforcement learning parameters, provided a 

powerful and reliable solution. Ultimately, the system of- 

fered a promising balance of accuracy, precision, recall, 

and speed, making it highly suitable for high-stakes, real- 

time anomaly detection tasks. 

C. Performance of EPORLA on Anomaly Detection 

The Enhanced Puma Optimized Reinforcement Learn- 

ing Algorithm (EPORLA), which integrates Quantum Su- 

perposition Mutation (QSM) into the traditional Puma op- 

timizer, demonstrated outstanding performance in real- 

time examination results anomaly detection. This en- 

hancement significantly refined the hyperparameter selec- 

tion process for reinforcement learning, including learn- 

ing rate, discount factor, exploration rate, and number of 

episodes. True Positives (TP) showed a slight reduction 

from 367 at 200 epochs to 364 at 800 epochs, while False 

Negatives (FN) rose modestly from 7 to 10. False Pos- 

itives (FP) impressively dropped from 15 to just 7, and 

True Negatives (TN) increased from 1482 to 1490, indi- 

cating improved classification of valid results. This trend 

highlighted EPORLA’s ability to maintain a high anomaly 

detection rate with reduced misclassification, as expressed 

in Table 5. 

In Table 5, the system’s false positive rate (FPR) de- 

creased from 1.00% to 0.47% across the training epochs, 

indicating a significant reduction in false alerts and en- 

hanced recognition of non-anomalous data. Specificity 

improved concurrently from 99.00% to 99.53%, empha- 

sizing the model’s exceptional capability in correctly iden- 

tifying genuine records. Although recall showed a slight 

decline from 98.13% to 97.33%, it remained consistently 

high, demonstrating the model’s reliability in capturing 

the majority of anomalies. The balance between high 

specificity and high recall indicates that EPORLA achieved 

both low false positives and minimal false negatives. This 

balance is critical in academic systems where both missed 

anomalies and false alarms can be costly. 

Table 5: Evaluation Results based on EPORLA. 
 

Epochs 200 400 600 800 

TP 367 366 365 364 

FN 7 8 9 10 

FP 15 12 9 7 

TN 1482 1485 1488 1490 

FPR 1.00 0.80 0.60 0.47 

SPEC (%) 99.00 99.20 99.40 99.53 

RECALL (%) 98.13 97.86 97.59 97.33 

PREC (%) 96.07 96.83 97.59 98.11 

ACC (%) 98.82 98.93 99.04 99.09 

F1-Score (%) 97.51 98.00 98.49 98.82 

Time (ms) 11.67 23.23 33.28 42.38 

 

Precision increased steadily from 96.07% to 98.11%, 

showing that EPORLA became more confident and ac- 

curate in its anomaly predictions as training progressed. 

This improvement translated into a significant rise in the 

F1-score, which advanced from 97.51% at 200 epochs 

to 98.82% at 800 epochs, representing a near-perfect har- 

mony between precision and recall. Accuracy also saw a 

consistent upward trend from 98.82% to 99.09%, affirm- 

ing the model’s overall correctness in decision-making. 

These performance gains demonstrated the advantage of 

enhancing the Puma optimizer with quantum-inspired mu- 

tation strategies, which effectively fine-tuned reinforce- 

ment learning configurations for optimal outcomes. Col- 

lectively, these metrics positioned EPORLA as the most 

accurate and reliable anomaly detection model among the 

three tested. Another advantage of EPORLA is the highly 

efficient detection time, which ranged from 11.67 ms at 

200 epochs to only 42.38 ms at 800 epochs, making it sig- 

nificantly faster than both PORLA and the traditional RL 

models. The reduced computation time, combined with 

higher detection accuracy, made EPORLA well-suited for 

real-time applications where speed and precision are crit- 

ical. As a result, EPORLA not only outperformed others 

in terms of accuracy and reliability but also proved to be 

the most time-efficient solution. Overall, the integration 

of the enhanced Puma optimizer into the reinforcement 
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learning framework sets a new benchmark for intelligent, 

responsive, and accurate anomaly detection systems in 

educational environments. 

D. Comparison of RL, PORLA, and EPORLA Models 

The comparison of ordinary Reinforcement Learning 

(RL), Puma Optimized Reinforcement Learning (PORLA), 

and Enhanced Puma Optimized Reinforcement Learning 

(EPORLA) in real-time examination results anomaly de- 

tection revealed significant performance improvements 

through optimization. RL, using manually selected pa- 

rameters, achieved a decent performance with a False 

Positive Rate (FPR) of 1.87% and specificity of 98.13%, 

indicating a fair ability to identify non-anomalous results. 

However, the recall of RL stood at 91.71%, suggesting it 

missed more anomalies compared to the optimized mod- 

els. Precision was 92.45%, and the overall accuracy was 

96.85%, while the F1-Score reached 95.21%, reflecting a 

moderately balanced model as analyzed in Table 6. De- 

spite this, RL required the highest detection time of 97.04 

ms, making it less efficient for real-time deployment. 

Table 6: Evaluation of RL, PORLA, and EPORLA. 
 

Model RL PORLA EPORLA 

Epochs 800 800 800 

FPR 1.87 1.07 0.47 

SPEC (%) 98.13 98.93 99.53 

RECALL (%) 91.71 94.92 97.33 

PREC (%) 92.45 95.69 98.11 

ACC (%) 96.85 98.13 99.09 

F1-Score (%) 95.21 97.28 98.82 

Time(ms) 97.04 73.66 42.38 

 

When the Puma Optimizer was introduced in PORLA, 

it significantly enhanced the RL model by automating the 

selection of optimal parameters such as learning rate, dis- 

count factor, exploration rate, and number of episodes. 

PORLA reduced the FPR to 1.07% and increased speci- 

ficity to 98.93%, minimizing the occurrence of false alerts. 

Sensitivity (Recall) improved to 94.92%, indicating better 

anomaly detection capability. 

Precision also rose to 95.69%, and accuracy climbed 

to 98.13%, with an F1-score of 97.28%, showing a well- 

balanced and more reliable model than the traditional RL. 

Detection time dropped to 73.66 ms, marking a notable 

improvement in processing efficiency. 

In Table 6, the highest performance gains were recorded 

with EPORLA, which further enhances the Puma opti- 

mizer through the incorporation of Quantum Superposi- 

tion Mutation (QSM). QSM helped avoid premature con- 

vergence and local minima by introducing diversity in the 

search space, leading to the discovery of globally optimal 

reinforcement learning parameters. As a result, EPORLA 

achieved the lowest FPR of 0.47% and the highest speci- 

ficity of 99.53%, showing exceptional capacity in cor- 

rectly identifying legitimate examination results. Recall 

reached an outstanding 97.33%, with precision at 98.11%, 

accuracy at 99.09%, and F1-score peaking at 98.82%, the 

highest among all three models. Furthermore, EPORLA 

completed detection in just 42.38 ms, making it the fastest 

and most effective model for real-time anomaly detection. 

E. Discussion of the Performance Metrics 

The results demonstrated a clear incremental perfor- 

mance between the three variants of the model: The tra- 

ditional Reinforcement Learning (RL) algorithm, Puma 

Optimized Reinforcement Learning Algorithm (PORLA), 

and the Enhanced Puma Optimized Reinforcement Learn- 

ing Algorithm (EPORLA). As shown in Figure 5, the 

false positive rate (FPR) consistently decreased across 

epoch values for all three methods, with EPORLA achiev- 

ing the lowest FPR of 0.47% at epoch 800, compared to 

PORLA’s 1.07% and RL’s 1.87%. This significant reduc- 

tion in false positives shows that nature-inspired optimiza- 

tion techniques like Puma optimization can substantially 

improve the exploration-exploitation balance in reinforce- 

ment learning frameworks, leading to more precise clas- 

sification boundaries. The enhanced algorithm incorpo- 

rating Quantum Superposition Mutation further refined 

this capability, enabling more accurate differentiation be- 

tween normal and anomalous results. 

 

Figure 5: FPR vs. Epoch (RL, PORLA, and EPORLA). 

 

 

Specificity results in Figure 6 revealed EPORLA’s su- 

perior performance in correctly identifying true negatives, 

with values rising from 99.00% at epoch 200 to 99.53% 

at epoch 800. PORLA achieved the second-best perfor- 

mance (98.93% at epoch 800), while traditional RL trailed 

with 98.13%. This pattern demonstrated how the integra- 

tion of optimization algorithms enhanced the model’s abil- 

ity to correctly classify legitimate activities. This is because 
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optimization algorithms like the enhanced Puma optimizer 

can introduce adaptive parameter tuning mechanisms that 

allow reinforcement learning models to generalize better 

across diverse non-anomalous patterns. The gradual im- 

provement across epochs indicated successful learning pro- 

gression, with EPORLA’s Quantum Superposition Muta- 

tion likely contributing to its ability to escape local optima 

and discover more optimal decision boundaries. 

 

 
Figure 6: Specificity vs. Epoch (RL, PORLA, and EPORLA). 

 

 

Figure 7 illustrates the sensitivity performance, where 

EPORLA again led with values ranging from 98.13% 

to 97.33% across epochs, followed by PORLA (95.72% 

to 94.92%) and RL (92.51% to 91.71%). Interestingly, 

all three methods exhibited a slight downward trend in 

sensitivity with increasing epochs, suggesting a potential 

trade-off between reducing false positives and maintain- 

ing true positive detection. This phenomenon aligns with 

the fact that when reinforcement learning agents optimize 

for overall accuracy, there may be slight compromises 

in sensitivity to achieve substantial gains in other met- 

rics. Despite this trend, EPORLA returned the highest 

sensitivity throughout, utilizing its QSM to balance the 

precision-recall trade-off through enhanced exploration. 

 

 
Figure 7: Sensitivity vs. Epoch (RL, PORLA, and EPORLA). 

The precision metrics shown in Figure 8 reflect 

steady improvement across epochs for all three variants, 

with EPORLA achieving the highest values (96.07% to 

98.11%), followed by PORLA (93.72% to 95.69%), and 

RL (90.81% to 92.45%). This upward trend contrasted 

with the sensitivity pattern, reinforcing the precision-recall 

trade-off inherent in classification systems. The observed 

trend was because the integration of Puma optimization 

with reinforcement learning can create a more adaptable 

reward function that prioritizes precision in high-stakes 

detection scenarios, and which can be further enhanced by 

quantum-inspired mutation operators in advanced imple- 

mentations. Again, EPORLA used its enhanced optimiza- 

tion abilities to lower false positives while maintaining 

strong true positive detection. 

 

 
Figure 8: Precision vs. Epoch (RL, PORLA, and EPORLA). 

 

 

Detection time results in Figure 9 revealed a sig- 

nificant efficiency for EPORLA, with the lowest pro- 

cessing times across all epochs (11.67 ms to 42.38 ms), 

compared to PORLA (18.38 ms to 73.66 ms) and RL 

(22.23 ms to 97.04 ms). This is particularly important 

for real-time detection systems where computational ef- 

ficiency is crucial. The substantial difference between 

EPORLA and the other methods suggests that the QSM 

not only improved the accuracy but also computational 

efficiency. An achievement that was possible because 

quantum-inspired optimization components can dramati- 

cally reduce the search space exploration required in re- 

inforcement learning, leading to faster convergence and 

lower computational overhead. The increasing trend across 

epochs for all methods reflected the growing complexity 

of the learned models, though EPORLA maintains the 

lowest slope. 
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Figure 9: Computation Time vs. Epoch (RL, PORLA, and 

EPORLA). 
 

 

Finally, Figure 10 shows the overall accuracy results, 

with EPORLA achieving the highest values (98.82% to 

99.09%), followed by PORLA (97.86% to 98.13%) and 

RL (96.63% to 96.85%). This comprehensive metric con- 

firmed the superior performance of EPORLA across the 

testing dataset. The consistent improvement in accuracy 

across epochs for all methods demonstrated a successful 

training progression, with EPORLA maintaining its ad- 

vantage throughout. EPORLA’s consistent high accuracy 

across epochs reinforces the fact that the synergistic com- 

bination of advanced nature-inspired optimization with re- 

inforcement learning creates a robust framework that can 

adapt to complex patterns while maintaining generaliza- 

tion capabilities. The integration of Quantum Superposi- 

tion Mutation in EPORLA appeared to have provided a 

significant edge in navigating the complex solution space, 

resulting in more optimal policy learning compared to the 

standard PORLA and traditional RL approaches. 

 

Figure 10: Accuracy vs. Epoch (RL, PORLA, and EPORLA). 

 

F. Discussion of Convergence Characteristic Curve 

Figure 11 illustrates the rate of convergence of the 

standard Puma Optimizer (PO) and the Enhanced Puma 

Optimizer (EPO) in terms of the best fitness value over 

200 iterations. The graph demonstrated that EPO, which 

integrated Quantum Superposition Mutation (QSM), con- 

verged significantly faster than the standard PO. Within 

the first 30 iterations, EPO reached a near-optimal fitness 

value, while PO took almost twice as long to achieve a 

similar result. 
 

 
Figure 11: Convergence Rate (PORLA vs. EPORLA). 

 

 

This rapid convergence of EPO is a direct conse- 

quence of QSM’s ability to introduce diversity in the so- 

lution space, thereby preventing premature convergence 

and ensuring a more efficient search. The superior perfor- 

mance of EPO is consistent across all iterations, confirm- 

ing the effectiveness of QSM in enhancing the exploration 

and exploitation balance in the optimization process. Sev- 

eral authors in the literature have emphasized the impor- 

tance of the convergence rate as a critical metric in evaluat- 

ing the efficiency of metaheuristic algorithms. According 

to the authors in [34], a faster convergence rate not only 

signifies computational efficiency but also demonstrates 

the algorithm’s ability to quickly escape local optima and 

reach the global optimum. The faster convergence exhib- 

ited by EPO aligned with this assertion, as it reached opti- 

mal fitness levels in fewer iterations compared to PO. 

G. Comparison with an Existing Work 

In the realm of real-time examination results anomaly 

detection, the Enhanced Puma Optimized Reinforcement 

Learning Algorithm (EPORLA) has demonstrated supe- 

rior performance compared to existing methodologies. 

Traditional Reinforcement Learning (RL) approaches, as 

discussed by researchers in [35], achieved a precision of 

90.81% and a recall of 92.51% in time series anomaly 

detection, leading to an accuracy of 96.63%. In contrast, 

EPORLA recorded higher precision and recall rates, re- 
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Table 7: Comparison: Result of EPORLA vs. State-of-the-Art Results. 
 

Author Model 
SPEC 

SEN PREC ACC Detection 

  (%) (%) (%) (%) Time (s) 

[23] FFNN 89.28 96.98 88.92 92.90 Nil 

[36] RL 97.66 92.51 90.81 96.63 Nil 

Developed Model EPORLA 99.53 97.33 98.11 99.09 42.38 

 

sulting in an accuracy of 99.09%. Also, authors in [23] 

utilized a Feed-Forward Neural Network model for the 

detection of result anomalies, achieving a precision of 

88.92%, a recall of 96.98%, a specificity of 89.28%, and 

an accuracy of 92.90%. The significant improvement 

recorded by EPORLA over these existing techniques can 

be attributed to the integration of Quantum Superposi- 

tion Mutation within the Puma optimizer, enhancing the 

selection of reinforcement learning hyperparameters and 

thereby optimizing the learning process as defined in Ta- 

ble 7. 

Furthermore, the detection time is a critical factor 

in real-time systems. Studies such as those by authors 

in [36] and [23] explored deep actor-critic reinforcement 

learning and Feed-Forward Neural Network, respectively, 

for anomaly detection, but lacked any metric on detection 

time. However, EPORLA addresses this shortcoming by 

achieving a detection time of 42.38 ms, which is a substan- 

tial improvement over the traditional reinforcement learn- 

ing method. This efficiency gain is crucial for timely inter- 

ventions in examination settings, ensuring that anomalies 

are detected and addressed promptly. 

5. Conclusions 

The Enhanced Puma Optimized Reinforcement Learn- 

ing Algorithm (EPORLA) demonstrated superior perfor- 

mance in real-time examination results anomaly detection 

systems. By integrating Quantum Superposition Mutation 

(QSM) into the standard Puma Optimizer (PO), the en- 

hancement significantly improved the convergence speed 

and global search ability of the algorithm. This led to the 

selection of optimal key hyperparameters such as Learn- 

ing Rate, Discount Factor, Exploration Rate, and Number 

of Episodes, which are critical to the effectiveness of the 

model. The resulting system achieved outstanding perfor- 

mance metrics, including a reduced False Positive Rate 

(FPR), high Sensitivity, Specificity, and an impressive Ac- 

curacy. These results affirm the robustness and reliability 

of EPORLA in identifying anomalies in examination data 

with minimal detection time. 

The integration of QSM into the standard PO fur- 

ther allowed EPORLA to overcome sensitivity to param- 

eter settings and the limitation of premature convergence 

often encountered in traditional metaheuristics when it 

comes to the discrete version of the optimization tech- 

nique. This improvement was reflected in the high Preci- 

sion and F1-Score, indicating the system’s strong balance 

between recall and precision. Comparatively, EPORLA 

consistently outperformed PORLA across all performance 

metrics, establishing its superiority as a more intelligent 

and efficient optimization framework. The reduction in 

detection time without compromising accuracy empha- 

sizes EPORLA’s scalability and suitability for real-time 

applications. This study achieved its aim of creating a 

discrete and adaptable version of the Puma optimizer for 

reinforcement learning. Additionally, it effectively uti- 

lized the optimizer to fine-tune the hyperparameters of 

a reinforcement learning-based result anomaly detection 

model, resulting in a model highly suitable for real-time 

applications. In conclusion, the application of EPORLA 

stands as a promising approach for educational institu- 

tions seeking dependable and timely anomaly detection in 

examination results processing. 

6. Recommendations 

It is recommended that EPORLA be adopted for real-time 

examination results anomaly detection due to its demon- 

strated efficiency, accuracy, and reduced computational 

cost. Educational institutions and examination bodies 

can leverage EPORLA’s optimized reinforcement learn- 

ing capabilities to automatically detect irregularities in 

students’ results with high precision and minimal false 

alarms. Future developments could explore its applica- 

tion in other domains of educational data mining and inte- 

grate it with machine listening for improved data integrity, 

transparency, and the capability to interact with its imme- 

diate auditory environment, analyze inputs, and respond 

with AI-guided precision. 
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ML Machine Learning 
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