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Abstract
While expensive hardware has historically dominated emotion recognition, our research explores the viability of cost-effective alter-
natives by utilising IoT-based low-resolution cameras with Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs).
In this work, we introduce a novel dataset specifically for thermal facial expression recognition and conduct a comprehensive per-
formance analysis using ResNet, a standard ViT model developed by Google, and a modified ViT model tailored to be trained on
smaller dataset sizes. This allows us to compare the efficacy of the more recent ViT architecture against the traditional CNN. Our
findings reveal that not only do ViT models learn more swiftly than ResNet, but they also demonstrate superior performance across
all metrics on our dataset. Furthermore, our investigation extends to the Kotani Thermal Facial Emotion (KTFE) test set where
we evaluate the generalisation capability of these models when trained using a hybrid approach that combines our dataset with the
KTFE dataset. Both ResNet and the ViT model by Google achieved high performance on the KTFE test samples, suggesting that
leveraging diverse data sources can significantly strengthen model robustness and adaptability. This study highlights three critical
implications: the promising role of accessible and affordable thermal imaging technology in emotion classification; the potential
of ViT models to redefine state-of-the-art approaches in this domain; and the importance of dataset diversity in training models
with greater generalisation power. By bridging the gap between affordability and sophistication, this research contributes valuable
insights into the fields of emotion recognition and affective computing.
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1. Introduction

Facial expression recognition (FER) is a crucial area of
research within the fields of affective computing and com-
puter vision. It involves the identification of human emo-
tions based on facial cues or poses, which are essential for
non-verbal communication. Starting in the 1970s, Paul
Ekman and Wallace V. Friesen categorised expressions
into six basic emotions: happiness, sadness, anger, fear,
disgust, and surprise [1]. Nowadays, FER has become
much more sophisticated by incorporating specialised
hardware and a variety of techniques, including local
feature analysis [2], holistic analysis [3], and deep learn-
ing techniques such as Convolutional Neural Networks
(CNNs) [4].

Although the CNN architecture has predominantly
dominated computer vision tasks such as image classifi-
cation and object recognition [5], recent advancements in
machine learning, particularly the introduction of Vision
Transformers (ViTs) [6], have enabled FER systems to
become more sophisticated and robust. Early research
shows that ViTs often demonstrate superior performance
over CNNs due to their lack of locality inductive bias,
which allows them to capture global dependencies more
effectively and leverage self-attention mechanisms to pro-
vide a more holistic representation of input data [7].

The intersection of emotion recognition technology
and affordable hardware solutions has sparked significant
interest within the research community. Traditionally, fa-
cial expression recognition has required expensive, spe-
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cialised equipment, often only available in a commercial
environment. However, the advent of affordable hard-
ware capable of delivering comparable performance to
costly alternatives is reshaping the landscape of machine
learning applications [8]. Moreover, the rapid develop-
ment of IoT technology has inspired the utilisation of
low-resolution cameras as a viable, cost-effective solu-
tion for different types of computer vision tasks [9]. Low-
resolution imagery, once considered a hindrance, can now
be harnessed effectively thanks to advancements in ma-
chine learning architectures. However, images in the visi-
ble spectrum pose privacy and security risks and often do
not meet the ethical requirements for real-world applica-
tions. Therefore, in this work, we utilise a thermal camera,
which is considered non-invasive.

Thermal imaging offers several key advantages over
visible-spectrum cameras in FER tasks. First, thermal
cameras are not affected by lighting variations, ambient
light conditions, or shadows [10]. Second, thermal imag-
ing captures more nuanced details related to physiological
signals, such as heat distribution and blood flow, which
correlate with emotional states and provide additional vis-
ible cues not present in RGB cameras [11]. Third, ther-
mal data protects identity more effectively than RGB im-
ages due to its inability to capture fine-grained texture and
colour information, making it a more privacy-conscious
choice for real-world applications [12].

This research explores the potential of these tech-
nological developments by introducing a new dataset for
thermal emotion classification and performing a compre-
hensive performance comparison using ResNet50 [13],
a state-of-the-art CNN model, against two ViT models;
one by Google [14] and another modified architecture tai-
lored for smaller dataset sizes [15]. We also form a hybrid
dataset with the state-of-the-art KTFE [16] to provide in-
sights into the generalisation potential of these technolo-
gies. To the best of our knowledge, no research papers
include ViT models when conducting emotion classifica-
tion using images in the thermal spectrum, and no ther-
mal camera dataset exists where data is collected using
an IoT-based thermal camera. Our key contributions are
as follows:
• Introduction of a novel thermal facial expression

recognition dataset, University of the West of Scot-
land Thermal Faces (UWSTF), collected using low-
cost thermal cameras

• Evaluation of low-cost, low-resolution thermal hard-
ware for emotion recognition, assessing its perfor-
mance using state-of-the-art models

• A side-by-side comparison of CNNs and ViT mod-
els on both our dataset and the hybrid dataset, ad-

dressing the question of bias produced byCNNmod-
els with vision transformers

The rest of the paper is organised as follows: Section 1.1
summarises related work, Section 2 describes the data col-
lection methodology, data preprocessing steps, and model
architecture, Section 3 details the results and describes the
evaluationmetrics and general discussion before the paper
concludes in Section 5.

1.1. Related Work

In this section, we highlight various research articles re-
lated to thermal camera datasets and thermal facial expres-
sion recognition. We briefly summarise each paper and re-
flect on certain limitations or drawbacks of each approach,
including how they could potentially be improved.

1.1.1. Thermal Camera Datasets

Thermal camera datasets have become increasingly sig-
nificant in facial expression recognition. Although not as
prevalent as visible spectrum datasets, thermal datasets
serve as crucial resources for training and testing algo-
rithms operating under varying conditions, poses, and
expressions. A summary of prominent thermal camera
datasets can be seen in Table 1.

A popular dataset among researchers is the KTFE
dataset introduced by [17]. It focuses on various facial
expressions; however, the demographic is limited to Viet-
namese, Japanese, or Thai nationals, which could ad-
versely affect models trained using this dataset. The same
authors also released KTFE v2 [16], this time integrating
different modalities for a more comprehensive analysis.
Similar issues exist in this dataset, as the same range of
nationalities was used.

Another popular dataset is NVIE, introduced by [18],
which incorporates both visible and thermal spectrum im-
ages. This dataset is a comprehensive collection with
different variations in angles of poses, glasses on and
off, and various expressions. However, the dataset’s com-
plexity may pose challenges in terms of processing, and
it is stored on a Chinese data storage platform, making
it difficult for non-Chinese speakers to access. Other
notable mentions of popular datasets include IRIS [19]
and the NIST/Equinox database by Equinox Corporation
(http://www.equinoxsensors.com/products/HID.html).

The Tufts Face Database, as described by [20], of-
fers a comprehensive collection of images across multiple
modalities, which include images in the thermal spectrum.
This dataset encompasses over 10,000 images from a di-
verse group of individuals, and although the inclusion of
other modalities allows for cross-comparison and bench-
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marking of algorithms, the dataset’s complexity may pose
challenges in terms of processing and analysis.

The authors in [21] introduced a dataset containing
various posed expressions across different angles under
controlled conditions. A notable weakness of their dataset
is the limited diversity, as it primarily features a narrow
demographic, which may affect the generalisability of al-
gorithms developed using this data. Wesley et al. [22]
also collected their data under controlled conditions and
conducted a comparative analysis between thermal and vi-
sual modalities. This data may be limited, as environmen-
tal factors could influence the results of future inference
by models trained using it, which may not be accounted
for in all scenarios.

Kopaczka et al. [23] introduced a thermal dataset in-
cluding rigorous annotation of facial expressions in their
approach. The comprehensive nature of the annotations
allows for detailed analysis of facial expressions. How-
ever, similar to [21], the demographic representation may
be limited, as it is not explicitly addressed, which could af-
fect the performance of models in real-world applications
where diversity is a critical factor.

This literature highlights significant advancements
in the development of thermal facial expression databases.
While these studies provide valuable data and methodolo-
gies, they also share common weaknesses such as limited
demographic diversity and environmental influences. Fur-
thermore, these studies use expensive cameras, often un-
available to general consumers, to collect their data, which
is a gap in the literature that this work intends to fill.

1.1.2. Thermal Facial Expression Recognition

Due to advancements in thermal datasets, there has been a
significant impact on the performance of facial expression
recognition models that utilise different architectures and
preprocessing approaches. The authors in [24] introduced
the InfraRed Facial Expression Network (IRFacExNet), a
deep learning model that capitalises on thermal imaging
features, such as low-light conditions where visible spec-
trum cameras struggle. Their model outperformed con-
ventional methods. Similarly, focusing on low-light con-
ditions, work in [25] utilises a CNN architecture and bases
their analysis on four regions of the face. While their re-
sults were promising, the study’s limited focus on only
four facial regions may overlook the complexity of emo-
tional expressions that involve broader facial movements.
In [26], the authors present TIRFaceNet, with an architec-
ture tailored for robustness against varying environmen-
tal conditions, and report admirable accuracy on both the
DHU and DHUFO datasets. However, to the best of our

knowledge, there are no insights into the model’s limita-
tions, and limited information or no reference is given for
the dataset.

The availability of multimodal datasets has enabled
researchers to conduct comparative analyses between ther-
mal and visible spectrum images. Using the Gray Level
Co-occurrence Matrix (GLCM) method to extract statis-
tical features, Sathyamoorthy et al. [27] employed a cus-
tom CNN alongside SVM classifiers. Their findings in-
dicate that thermal images outperformed visible images
by achieving higher accuracy, although the proposed ap-
proach’s reliance on statistical features may not fully cap-
ture the nuances of emotional expressions. Unlike statis-
tical features, the authors in [28] proposed an architecture
based on a modified version of ResNet152 to enhance fea-
ture extraction capabilities. Their study reported metrics;
however, due to the complexity of the architecture, chal-
lenges may arise in terms of computational efficiency and
applications operating in real-time.

Many popular models based on the CNN architec-
ture exist, and often approaches use the base model and
conduct transfer learning. Kamath et al. [29] present
TERNet—an architecture adopting the VGG-Face CNN
model. Their findings highlight the potential of transfer
learning in enhancing facial expression recognition accu-
racy while bypassing the need to train complex models
from scratch. The authors in [30] conducted a compre-
hensive analysis of feature-based facial expression recog-
nition, which provided valuable insights into feature ex-
traction techniques both locally and globally. Contrary to
[29], their findings reported that features extracted using
the VGG CNN network performed poorest on the KTFE
and NVIE datasets. This suggests that different models
and approaches are better suited to different datasets. Also
adopting a transfer learning approach, the authors in [31]
utilise AlexNet for feature extraction and classification.
They enhanced the architecture by creating a hybridmodel
that combined AlexNet and SVM to yield the best results,
with thermal images’ accuracy outperforming visible im-
ages.

The reviewed work highlights the many approaches
that can be taken utilising thermal images, machine learn-
ing classifiers, deep learning models, and transfer learn-
ing, which show promise in improving recognition accu-
racy. However, while deep learning models have shown
significant improvements, issues related to overfitting,
computational efficiency, and real-time applicability re-
main under-explored. Furthermore, existing work tends
to use datasets where data has been collected using expen-
sive and often commercial thermal cameras. In this work,
we intend to demonstrate model performance using acces-
sible hardware combined with deep learning techniques.
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Table 1: Comparison of thermal facial expression datasets.

Dataset Modality Expressions
Included

Demographic
Diversity

Elicitation
Method

Limitations

KTFE
[17]

Thermal anger, disgust,
fear, happy,
sad, surprise,
neutral

Low Spontaneous Limited demographic diversity;
restricted to specific nation-
alities (Vietnamese, Japanese,
Thai)

KTFE v2
[16]

Multimodal anger, disgust,
fear, happy,
sad, surprise,
neutral

Low Spontaneous Same demographic limitations
as KTFE (Vietnamese, Japanese,
Thai); limited generalisability

NVIE [18] Multimodal anger, disgust,
fear, happy,
sad, surprise

Moderate Posed,
Spontaneous

Complex data structure and pre-
processing; hosted on a Chinese
platform, making access diffi-
cult for non-Chinese users

IRIS [19] Multimodal anger, laugh-
ing, surprise

Moderate Posed Lacks detailed documentation
on expressions, demographics,
and elicitation methods

NIST
Equinox

Thermal smiling,
frowning,
surprised

Unknown Posed Limited public documenta-
tion; commercial dataset with
restricted access; unclear par-
ticipant demographics and
methodology

Tufts [20] Multimodal neutral, smile,
closed eyes,
shocked

High Posed Complex multimodal structure
not tailored specifically for fa-
cial expression recognition; ther-
mal data can be difficult to iso-
late; higher processing overhead

Kowalski
et al. [21]

Thermal smiling, sad,
surprise,
angry

Limited Posed Demographic details such as
age, gender, and ethnicity not re-
ported; limited subject diversity

Wesley et
al. [22]

Multimodal surprise, fear,
sadness, dis-
gust, anger,
happiness

Moderate Posed Small sample size; limited scal-
ability to real-world environ-
ments with natural variability

Kopaczka
et al. [23]

Thermal neutral, happi-
ness, sadness,
surprise

Limited Posed Small participant pool with lim-
ited demographic diversity; de-
mographic details (age, gender,
ethnicity) not specified; expres-
sions limited to a subset of basic
emotions

University
of the
West of
Scotland
Thermal
Faces
(UWSTF)

Thermal anger, fear,
happy, neu-
tral, sad,
surprise

Moderate Posed,
Spontaneous

Small sample size; lacks in-the-
wild data
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2. Materials and Methods

In this section, we explain the data collection methodol-
ogy by providing information on how participants were
recruited, how emotions were stimulated, what equipment
was used, what the environment setup looked like, how
the dataset was curated, what the preprocessing stages en-
tailed, and information on the architecture of the CNN and
ViT models.

2.1. Participant Recruitment

Fourteen male participants, aged between 21 and 42, were
recruited. They were either post-doctorate researchers or
PhD students at the University of the West of Scotland
in the UK. The participants hailed from various countries,
including Scotland, England, China, Romania, and Pak-
istan. They were recruited through internal communica-
tions within the research group. The study received ethi-
cal approval from the University of theWest of Scotland’s
ethics board under project #18323. None of the partici-
pants wore glasses.

Each participant was assigned a specific date and
time for data collection. Upon arrival, they were provided
with the necessary information sheets and consent forms,
which were signed before any exercises commenced.

In addition to recording age, gender, and nationality,
participants were asked whether they had any known af-
fective disorders or prior experience with tasks involving
facial expression recognition. None reported any affec-
tive history or prior exposure to such tasks. While the
participant pool consisted of individuals in a research set-
ting, this background was not associated with specialised
training in affective computing. These measures were
taken to minimise potential selection bias and enhance
the generalisability of the dataset within the scope of this
exploratory study.

2.2. Stimuli

A series of video clips was selected by the authors to
elicit spontaneous facial expressions, comprising 2 clips
each for anger, fear, happiness, sadness, and surprise, and
9 clips for the neutral expression. Videos have been effec-
tive stimuli for eliciting a wide range of emotions [32,33].
Short videos, such as YouTube Shorts and TikTok, are
extremely popular and were used to keep participants en-
gaged [34].

The selection process was informed by prior work in
similar thermal datasets such asKTFE [16] andNVIE [18],
and validated through participant self-reports immediately
following each video clip. In KTFE, the stimuli were se-
lected by the authors based on cultural relevance, and

participants self-reported their emotional responses us-
ing standardized scales. In NVIE, emotional videos were
used to elicit spontaneous expressions, and self-reported
responses were used to confirm the appropriateness of
each clip, with mismatches excluded.

Similarly, we chose videos based on cultural rele-
vance and public viewer comments indicating strong emo-
tional responses. After each clip, participants reported how
the videomade them feel, and only clips where the intended
emotion was confirmed by participant feedback were re-
tained in the dataset. While most emotions during sponta-
neous elicitation were successfully captured—particularly
happiness and surprise—some emotions proved more dif-
ficult to evoke, as also reported in previous work [35].

For the posed facial expression data, emoticons rep-
resenting each facial expression were displayed to prompt
participants. Rather than imitating the emoticons directly,
participants were asked to produce expressions that felt
natural to them for each emotion category. Emoticons
were selected for their simplicity and cultural familiarity,
which have been shown to support intuitive emotional in-
terpretation and expression [36].

2.3. Equipment

ATOPDONTC001 thermal camera was used in this study
to collect thermal images. The TC001 operates in a spec-
tral range of 8-14 micrometres and has a resolution of
256 × 192 pixels. The camera can record at a rate of up
to 25 frames per second and has a temperature range of
−20 to 150 degrees Celsius with a temperature accuracy
of ±2 degrees Celsius. The camera also features a Noise
Equivalent Temperature Difference of 40 milli-Kelvin at
25 degrees Celsius and operates with a power consump-
tion of 0.35W. The TC001 weighs 30 g and measures
71 × 42 × 14 mm.

The camera was connected to an ASUS Vivobook
laptop running Windows 11, which had the TCView soft-
ware installed. A table was used to place the laptop, and
a 50-inch Samsung TV was used to show video clips and
images of the emoticons. A tripod was employed to hold
the camera in position, and a traditional office chair was
provided for participants to sit on.

2.4. Environment Setup

The data was collected inside a lab at the University of
the West of Scotland. The room was an approximately
24 square metre L-shaped area, featuring four windows
on one wall and five windows on the other side. The room
was not empty, as there were various desks with computer
monitors situated around the perimeter. A small 3 × 3
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metre area in the roomwas used as the data collection area,
the arrangement of which can be seen in Figure 1.

Figure 1: The approximate data collection set up.

To ensure participant discretion and comfort, data collec-
tion was conducted in a dedicated and quiet section of the
lab with minimal distractions. The 3 × 3 metre area used
for recording was positioned away fromwindows and foot
traffic. Blinds were drawn during data collection to reduce
visual distractions and control natural light. Only essential
personnel were present, and no observers were in the di-
rect line of sight of participants. Participants were seated
alone during recordings and instructed to behave naturally,
with the assurance that there were no ‘correct’ emotional
responses. They were also informed that they could with-
draw at any time without consequence. Room tempera-
ture and lighting conditions were kept consistent across all
sessions to avoid external influences on emotional expres-
sion. The thermal camera setup was non-intrusive, and
no visible facial markers or physical contact were used to
preserve a neutral and comfortable environment.

2.5. Protocol

Spontaneous and posed facial expressions were collected
as part of this study. Before the collection began, each par-
ticipant was given information about the process and the
option to opt out at any time. First, using the TC001 cam-
era recording at 25 frames per second, spontaneous emo-
tions were collected. This involved participants watching
19 short video clips, presented in a random order, on a TV
with the camera placed between the TV and the partici-
pant. Starting with a sad short video followed by a neutral
clip, this pattern continued by first playing a short video
that elicited an emotion other than neutral, followed by a
neutral video clip, an approach taken by [18] to help allevi-
ate any negative feelings. After each short video clip, the
participant reported how that clip made them feel from the
six emotions: anger, fear, happiness, neutrality, sadness,

surprise, or other. This is a similar approach to that taken
by [16]. Once all short videos were watched and emo-
tions were reported, the video recording of the participant
was stopped.

After the spontaneous collection was complete, par-
ticipants were asked if they were comfortable proceeding
to the posed collection activity, to which all responded af-
firmatively. To record the posed emotions, the same setup
was used as in the spontaneous collection, with the TC001
recording. However, instead of playing video clips, the
participant was asked to mimic the emoticon displayed on
the TV. The participants were asked to mimic each posed
expression in a random order, three times for three sec-
onds each, reverting to a neutral pose between expressions.
After the posed data collection was complete, each partici-
pant was debriefed to ensure that they were not affected by
any of the materials used to induce the emotions. None of
the participants reported feeling any adverse effects, con-
cluding the data collection process.

2.6. Dataset Curation

Separate thermal video recordings were created for each
emotion-eliciting clip, allowing individual emotional re-
sponses to be evaluated in isolation. After data collec-
tion was completed, the recordings were saved in MP4
format and prepared for frame extraction. This separation
ensured that only frames corresponding to a specific emo-
tional stimulus were considered during the annotation pro-
cess. We adhered to the following process when collecting
the data:

• Start video clip
• Start thermal recording
• Stop the video clip
• Stop thermal recording
• Collect participants’ self-reported emotions

To create the thermal facial expression dataset, each spon-
taneous and posed video recording was exported into indi-
vidual frames in JPG format using the OpenCV library in
Python [37]. The selection process was performed manu-
ally by the authors, as shown in Algorithm 1. Every frame
was reviewed and evaluated based on the participant’s self-
reported emotion following each video clip, as well as visi-
ble facial cues in the thermal image, such as changes in the
cheek, eye, or mouth regions. Only frames that reflected
the intended emotional state were included in the dataset.

Thismanual annotation process follows similar prac-
tices in thermal FER literature. For example, Kopaczka
et al. [23] performed manual frame selection and verified
annotations through expert agreement, while the KTFE
dataset [16] relied on participant self-reports and con-
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Algorithm 1 Thermal Frame Annotation Procedure.
1: for each thermal video clip do
2: Convert video to image frames
3: if participant’s reported emotion matches the in-

tended emotion of the clip then
4: for each extracted frame do
5: if thermal facial cues are visibly aligned with

reported emotion then
6: Add frame to dataset with corresponding

emotion label
7: end if
8: end for
9: end if
10: end for

trolled experimental protocols to guide the inclusion of
expression samples. Each selected image was then as-
signed to a directory corresponding to one of six emotion
classes and prepared for preprocessing.

As a result, a total of 61 images for anger, 130 im-
ages for happiness, 97 images for neutrality, 92 images for
sadness, and 178 images for surprise. Figure 2 shows an
example of each expression from the exported frames.

Figure 2: An example image of each emotion in the dataset.

2.7. Preprocessing

Various steps were taken to prepare each image in the
dataset for model training. First, a Python script was cre-
ated in which the images were loaded from the directories
previously created during the dataset curation step using
the OpenCV library [37]. Next, a pre-trained Haar Cas-
cades classifier was used on each image to detect whether
a face was present. As expected, due to the manual dili-
gence in the dataset curation step, a face was successfully
found in each image.

Using the coordinates of the face’s position identi-
fied by the Haar Cascades model, the face was cropped
from each image, the remaining backgroundwas removed,

the image was converted to greyscale, and finally nor-
malised. The image was then resized to 48 × 48, which
are common dimensions for many types of image clas-
sification tasks, as it is large enough for models to pick
up nuances and small enough to be efficient for the train-
ing stage and inference. The image channels were then
merged to ensure it had three channels, as this format
is required by certain models. Finally, the dataset was
split into training, validation, and testing sets using a
60/20/20 ratio.

2.8. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are deep learning
models primarily used for structured grid data, such as im-
ages, using a series of layers that include convolutional
layers, pooling layers, and fully connected layers [38].
CNNs employ kernels in the convolutional layers that
slide over the input data to extract local features, which
are crucial for the model in recognising patterns in images.
These fixed patterns can be a limitation of the CNNmodel,
but they save training time as the model doesn’t need to
learn how to focus.

This process is followed by activation functions, typ-
ically Rectified Linear Units (ReLU), which introduce
non-linearity into the model, enabling it to learn complex
patterns. To reduce the spatial dimensions of feature maps,
pooling layers are used, often employing max pooling or
average pooling. These layers decrease the computational
load and help prevent overfitting. This hierarchical struc-
ture enables CNNs to learn increasingly abstract features
with each layer, from simple edges in the initial layers to
more complex shapes and objects in the deeper layers [39].

CNNs have gained prominence in facial expression
recognition due to their ability to learn features from fa-
cial images without the need for manual feature extrac-
tion, which was a limitation of traditional machine learn-
ing methods. The architecture of CNNs allows them to
effectively capture both low-level features, such as basic
textures and edges, and high-level features, such as facial
expressions. Recent advances in deep learning have sig-
nificantly improved the performance of facial expression
recognition models, enabling them to operate effectively
in challenging conditions such as variations in lighting,
head pose, and angles [40].

To further enhance the performance of CNNs, some
approaches leverage transfer learning, where pre-trained
CNN models are fine-tuned on facial expression recogni-
tion datasets, allowing for better generalisation and per-
formance on new data [41]. In general, CNNs combine
their robust feature extraction capabilities with advanced
training techniques to achieve high accuracy and reliabil-
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ity, representing a powerful tool for recognising human
emotions from facial expressions. In this work, we fine-
tune the ResNet50 pre-trained model [13] using the Keras
deep learning API [42].

2.9. Vision Transformers

The introduction of the transformer model [43] has signif-
icantly influenced natural language processing and has re-
cently advanced into vision and multimodal applications.
In recent years, state-of-the-art image classification has
been dominated by CNNs until the introduction of vision
transformer (ViT) models. Unlike CNNs, which rely on
local receptive fields and hierarchical feature extraction,
ViTs utilise a self-attention mechanism. This mechanism
allows the model to capture global dependencies across
the entire image by dividing the image into patches, which
are then linearly embedded into a sequence of tokens for
the transformer to process [6]. The self-attention mecha-
nism enables the model to assess the importance of differ-
ent patches, facilitating a better understanding of spatial
relationships and contextual information within the image.

ViTs have shown promising performance in the field
of facial expression recognition, specifically in challeng-
ing scenarios such as varying lighting conditions and oc-
clusions. The authors in [44] present TFE (Transformer
Architecture for OcclusionAware Facial ExpressionRecog-
nition), demonstrating that transformers can effectively
manage occlusions by focusing on relevant facial features
while ignoring irrelevant background noise. Additionally,
although different types of ViT models exist, Li et al. [45]
employs the Mask Vision Transformer (MVT) model,
which incorporates a mask generation network to filter
out complex backgrounds and occlusions, a technique
that further enhances the model’s robustness, especially
for facial expression recognition in the wild.

Moreover, ViTs address the limitations inherent in
CNNs. Traditional CNNs rely on local features and of-
ten struggle with fixed-size input requirements [46]. The
global receptive field of transformers allows them to learn
more comprehensive representations of facial expressions
by utilising positional embeddings, enabling the model to
capture nuances within the data in unexpected ways. How-
ever, this comes at a cost: the training time increases, and
larger amounts of training data are required, resulting in
high computational resource demands. Research using
ViT models for thermal facial expression recognition is
not as prevalent as work involving CNNs. In this study,
the aim is to address this gap by comparing the perfor-
mance of a modified ViT model described in [15], herein
referred to as the modified ViT, designed for training on
smaller datasets utilising the Keras API, and fine-tuning

on a pre-trained ViTmodel developed by researchers from
Google [14] using the Hugging Face platform [47].

3. Results

In this section, we describe the feature extraction process
and the evaluation metrics chosen to assess the perfor-
mance of the models. We compare training and testing
performance and provide insights into generalisation capa-
bilities by incorporating test data from the KTFE dataset.

3.1. Feature Extraction

To evaluate the performance of the CNN architecture, the
feature extraction process utilised the pre-trained ResNet
model’s convolutional layers as a foundational component.
This approach processes input images by leveraging the
model’s pre-trained weights on the ImageNet dataset [48].
The output of the convolutional layers captures high-level
abstract representations of the input images, which are
then passed to subsequent layers for further processing.
These layers focus on feature refinement and classifica-
tion based on the extracted features. Some studies have
shown that using regions of interest can enhance the per-
formance of CNNs [49], while other work emphasises the
importance of using the entire face to capture temperature
changes across the facial surface [50].

The pre-trained ViT model developed by Google
extracts features following the standard architecture of
the model. First, it divides the input image into non-
overlapping patches of 16× 16 pixels. Patch embeddings
are created by flattening each patch before linearly project-
ing it into a vector. Positional embeddings are added to
the patch embeddings to incorporate spatial information.
These embeddings serve as input tokens for the Trans-
former, where the core feature extraction occurs within the
Transformer encoder, which comprises several layers. To
capture intricate relationships between patches, each layer
features multi-head self-attention, a feed-forward neural
network (Multi-Layer-Perceptron) for non-linear feature
extraction, and layer normalisation to stabilise the net-
work, resulting in a sequence of rich token embeddings.

The modified ViT model also follows the standard
architecture of the model in the feature extraction pro-
cess; however, it implements further customisations. For
instance, it tokenises patches using shifted patch tokeni-
sation, whereas the Google model utilises a simpler patch
embeddingmechanism based on fixed-size non-overlapping
patches. Furthermore, the Google model relies on stan-
dard multi-head attention, whereas the modified model
introduces a trainable temperature parameter to scale the
query vectors, providing more flexibility compared to
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the standard multi-head attention mechanism. Despite
these variations, both ViT models utilise the transforma-
tive power of attention mechanisms to capture complex
relationships for effective feature extraction.

3.2. Evaluation Metrics

To evaluate the effectiveness of the models, the following
performance metrics were included: accuracy, precision,
recall, and F1 score. Confusionmatrices were also utilised
to provide insights into accuracy and error patterns across
the different emotion categories.

• Accuracy—a straightforward metric that offers an
overall sense of model performance by measuring
the proportion of correctly classified instances over
the total number of instances.

• Precision—a metric that reflects the model’s ability
to identify positive samples correctly by measuring
the ratio of true positive instances to the sum of true
positive and false positive instances.

• Recall—a metric that evaluates the model’s capabil-
ity to capture all relevant instances bymeasuring the
ratio of true positive instances to the sum of true pos-
itive and false negative instances.

• F1 Score—a metric that balances the importance
of precision and recall by measuring the harmonic
mean of precision and recall.

3.3. Comparison of Model Training

To train each model, the data was split into 60/20/20
for training/validation/testing. Each model underwent
200 epochs of training; however, early stopping callbacks
were implemented to prevent overfitting. These callbacks
were based on the evaluation of accuracy and loss from the
training and validation data and included a function to re-
duce the training learning ratewhen a plateauwas detected.

Starting low but gradually increasing over time, the
training process for the ResNetmodel lasted for 125 epochs
before stopping early. Figure 3 illustrates that the vali-
dation accuracy initially surpassed the training accuracy,
suggesting effective generalisation to the validation data.

The ViT model by Google exhibited a rapid learning
process, as shown in Figure 4, achieving near-perfect accu-
racy in just a few epochs. In contrast to the ResNet model,
the training accuracy exceeded the validation accuracy
early in the training process, although both followed sim-
ilar trajectories thereafter. This indicates that the model
learned quickly and overfitted the training dataset, sug-
gesting that the early stopping patience was insufficient
to prevent overfitting. However, the validation accuracy

was still respectable, highlighting the model’s generalisa-
tion capabilities.

Figure 3: ResNet training and validation accuracy.

Figure 4: ViT by Google training and validation accuracy.

Figure 5 shows the modified ViT model, which demon-
strated a swift learning process, terminating training early
at 46 epochs. Despite minor fluctuations, both training and
validation accuracies stabilised early and maintained high
accuracy, indicating efficient generalisation and adaptation.

In general, each model showed different behaviours
in the training process, highlighting their unique character-
istics and learning speeds. Notably, the ViT models man-
aged to learn in far fewer epochs than the ResNet model.

3.4. Comparison of Model Performance

After the training process, the models’ performance was
evaluated using the test data from the training dataset
split, with results reported using the metrics described in
Section 3.2. Macro averages were used to provide insights
across class distributions. The results are summarised in
Table 2 while Table 3 shows the results of each model at
a more granular level for each class.
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Figure 5: Modified ViT model training and validation accuracy.

Table 2: Each model’s performance for Accuracy, Precision, Re-
call, and F1-Score.

Model Accuracy Precision Recall F1-Score

ResNet 95 92 96 94

Google ViT 96 96 95 95

Modified
ViT

96 97 96 96

Table 3: The performance of each model for each class.

Model Metric An Fe Ha Ne Sa Su

ResNet
Precision 92 100 100 75 88 100
Recall 86 100 86 100 100 100
F1 92 100 93 86 93 100

Google
ViT

Precision 100 89 100 89 100 96
Recall 100 89 100 89 93 100
F1 100 89 100 89 96 98

Modified
ViT

Precision 100 100 085 100 100 100
Recall 100 100 100 82 93 100
F1 92 100 92 90 97 100

The ResNet model demonstrated high accuracy at 95. The
precision reached 92, indicating a respectable rate of true
positive predictions. Recall was slightly higher at 96, sug-
gesting that the model effectively identified the majority
of positive instances, resulting in an F1 score of 94.

The model achieved perfect scores when predicting
Fear and Surprise; however, it showed some limitations
in classifying Neutral and Anger emotions. Although pre-
cision and F1 score for the Anger emotion were high, the
recall was comparatively lower at 86. In contrast, for the
Neutral emotion, precisionwas relatively low, but both the
F1 score and recall were high. Similarly, although preci-
sion was high for the Sad emotion, it was the lowest scor-
ing metric with a high F1 score and perfect recall.

The ViT model by Google achieved slightly higher
accuracy than the ResNet model, reaching 96. The model

also achieved considerably more precision at 96. Finally,
with a recall of 95, the model maintained effective detec-
tion capabilities, albeit slightly less sensitive than its preci-
sion, culminating in an F1 score of 95. Unlike ResNet, this
model managed to identify the Anger andHappy emotions
with perfect precision, recall and F1 scores. Performance
deteriorated when identifying Fear and Neutral classes, al-
though metrics still remained high. For the Sad emotion,
the model presented excellent precision of 100 and a re-
spectable recall and F1 score, and when predicting Sur-
prise, the model performed exceptionally well, closely ap-
proaching perfect scores.

The modified ViT model excelled and surpassed
ResNet and Google ViT in almost all metrics. Although
the same accuracy score was achieved as the model by
Google, themodifiedViT achieved 97 for precision, demon-
strating a higher proportion of correct positive predictions.
Its recall matched the accuracy score of 96, resulting in
an F1 score of 96, marking the modified ViT as the top-
performing model in our comparison. Similar to ResNet,
this model achieved perfect scores for the Surprise and
Fear classes, while detecting Anger was also near-perfect,
with an F1 score of 92. The model experienced some
challenges with the Happy emotion, where model pre-
cision and F1 score were lower despite a perfect recall
score. This model achieved the highest precision for Neu-
tral, yet recall slightly lagged, resulting in an F1 score of
90. This was similar to the Sad emotion; however, recall
was higher, which resulted in an F1 score of 97.

In summary, while all models exhibited high perfor-
mance across metrics, ResNet showed strong general per-
formance, particularly for Fear and Surprise classes, while
the ViT by Google excelled with Anger and Happy recog-
nition. The modified ViT revealed areas for improvement
but demonstrated impressive precision for Surprise and
Sad emotions. The modified ViT outperformed the others,
particularly excelling in overall precision and F1 score, un-
derscoring its efficacy in thermal emotion classification.

3.5. Model Generalisation

In our study, we evaluated the generalisation capabilities
of thermal emotion classification using learning curves—a
method that provides insight into a model’s performance
as the training dataset size gradually increases [51]. We
tested our models on different portions of the dataset, rang-
ing from 50% to 100%. Our evaluation focused on two
scenarios: using only the KTFE dataset and using a mixed
dataset comprising KTFE test samples alongside a 20%
test split from our own collected dataset.

For the KTFE dataset, 90 samples were selected as
a fixed test set across all generalisation experiments. The
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remaining 359 images were used for training, with subsets
ranging from 50% to 100% of the available training data.
The KTFE dataset contained 449 images. In the mixed
dataset configuration, an additional 106 test samples from
our dataset were included alongside the KTFE test items
and these test sets remained unchanged across all train-
ing set size comparisons. To ensure reproducibility and
consistent evaluation, a fixed random seed (42) was used
during preprocessing.

Although some models showed signs of overfitting
during training, early stopping was implemented based
on validation accuracy and loss, and the best-performing
model checkpoint in the validation set was restored
for evaluation.

As shown in Figure 6, the ResNet model achieved an
initial accuracy of 58%when half of the KTFE dataset was
utilised, which increased steadily as more of the training
data were incorporated, eventually peaking at 84% with
90% of the dataset—the highest accuracy recorded for the
KTFE test data—before dropping slightly to 82% when
the complete dataset was utilised. Figure 7 shows, in con-
trast, testing accuracy on the hybrid dataset remained con-
sistently around the high 80s and 90% mark, starting at
89%when using 50% of the data, suggesting strongmodel
generalisation capabilities.

Figure 6: Model accuracy on different sizes of the KTFE dataset.

The Google ViT model’s results displayed in Figure 6 fluc-
tuated when testing on the KTFE dataset, starting at 63%
accuracy before sharply increasing to 82%when using 70%
of the dataset as part of the training data. This was followed
by a slight decline in performance, which then stabilized at
approximately 80% as larger portions of the dataset were
utilized. In the mixed testing data shown in Figure 7, the
model started with an impressive 88% accuracy using only
50% of the KTFE dataset in the training data before reach-
ing a high of 94% with 70% of the training data used—the

highest accuracy recorded—followed by a slight decrease
in performance but remaining above 88%.

Figure 7: Model accuracy on different sizes of the mixed dataset.

When using the modified ViT model, accuracy on the
KTFE test set started at 69% with 50% of the KTFE
dataset used in the training data before peaking at 79%
when using 80% of the data, then dropping slightly as
seen in Figure 6. In the mixed test set shown in Figure 7,
the model showed a strong initial accuracy of 87% with
50% of the KTFE training data included, and the accuracy
continued to vary across the different dataset sizes while
remaining above 80%. The model peaked at 88% when
the full dataset was used during the training process.

4. Discussion

The study aimed to evaluate the performance of different
deep learning models in classifying emotions using ther-
mal cameras. The performance of ResNet, Google ViT,
and a modified ViT was compared, providing some inter-
esting insights. The ResNet model, comprising a CNN
architecture, displayed robust general performance, ex-
celling particularly in classifying Fear and Surprise emo-
tions with perfect precision and performing well in test
instances involving the KTFE dataset. Meanwhile, both
ViT models yielded slightly higher overall accuracies,
with the modified ViT achieving the highest precision
across all tests. In particular, the Google ViT achieved
perfect scores for Anger and Happy emotions and demon-
strated exceptional generalisation capabilities when tests
included the KTFE dataset.

Although the ResNet architecture has been proven
effective for facial expression recognition [52,53], the re-
sults in this work suggest that ViT models—especially
the modified ViT—are particularly adept at thermal facial
expression recognition. This may be attributed to their
architecture, which enables more nuanced feature extrac-
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tion [54]. The rapid learning process, portrayed in the
results and overall performance of the ViT models, aligns
with previous findings indicating their advantage in image
classification tasks [55–57].

Moreover, the use of low-cost cameras and making
thermal emotion classificationmore accessible could have
a substantial impact in fields such as affective comput-
ing and healthcare. This data could be used to train mod-
els and form part of advanced systems that monitor emo-
tional well-being or enhance human-computer interaction
by accurately interpreting emotional states in real-time set-
tings. The results show that the generalisation capabili-
ties provide the potential to capture wider variability and
incorporate diverse data, which is pivotal for real-world
applications where data conditions can significantly vary.
As the thermal spectrum is also considered non-invasive
data [12], this work contributes meaningfully to develop-
ing ethical applications, where privacy and security risks
are prevalent.

Nonetheless, this study does contain some constraints
and limitations. One significant limitation is the dataset
size and diversity. While the models performed well,
the dataset does not contain any “in-the-wild” data [58],
which might feature variations in head angles, head rota-
tion, and lighting or shadows. In addition, while gender
and ethnic diversity were not the main focus of this work,
the dataset could be improved and considered more bal-
anced with a better male-to-female ratio and increased
ethnic diversity. Further, this work shows that using this
dataset to form a hybrid dataset can yield respectable re-
sults and offers a potential solution when only low-cost
cameras are available, yet data collection remains difficult.

To address these limitations, future work should
focus on expanding the dataset, incorporating more di-
verse test participants, and collecting data under condi-
tions that better reflect real-world scenarios. Exploring
hybrid datasets is another promising direction, particu-
larly to determine the optimal ratio of state-of-the-art to
low-cost data for maximal model performance on other
prominent thermal datasets.

Another avenue worth exploring is the development
of hybrid models that combine the strengths of convolu-
tions and transformers, which may offer enhanced per-
formance in specific contexts—especially when both lo-
cal feature extraction and global context are valuable.
Techniques such as transfer learning could also be more
deeply leveraged to maintain high performance across
diverse environments without extensive retraining. In
this study, we applied transfer learning by fine-tuning
a pre-trained Google ViT model on our thermal dataset,
demonstrating strong generalisation even with limited
training data. Additionally, convolutional methods such

as region-based cropping or attention-guided feature en-
hancement could be employed to refine input representa-
tions in hybrid architectures.

Lastly, while this work primarily contributes to a
novel dataset and comparative model evaluation, the find-
ings have broader implications for real-world system inte-
gration. The rapid convergence and inference speed of the
ViT models—particularly the modified version trained on
smaller datasets—suggest viability for deployment on edge
devices or embedded systems. Real-time metrics such as
latency, throughput, and energy efficiency could be bench-
marked in future implementations, especially in applica-
tions like driver monitoring, emotion-aware user interfaces,
or mental health support tools [59–61]. Testing these mod-
els on platforms such as Raspberry Pi or NVIDIA Jetson
would help identify hardware limitations and inform sys-
tem architecture decisions under real-world constraints.

Although this dataset is relatively small in scale, it
offers several advantages that support reliable model eval-
uation, including moderate participant diversity across age
and national background. Along with its structured class
distribution and controlled elicitation protocol, these fac-
tors enhance its utility as a benchmark for evaluating mod-
els in low-cost, real-world emotion recognition scenarios.

5. Conclusions

This work introduces our low-cost thermal facial expres-
sion recognition dataset and explores the potential of ViT
models as a viable alternative to traditional CNNs for ther-
mal emotion classification, particularly within the context
of low-resolution imagery obtained from IoT-based low-
cost thermal cameras. Two ViT models were used: one
developed by Google and a modified model. Addition-
ally, ResNet was used for comparison within the CNN ar-
chitecture. Our findings highlight several key insights that
contribute to the fields of emotion recognition technology
and affective computing.

Compared to ResNet, the ViT models demonstrated
a rapid learning capability, with the modified ViT model
outperforming both ResNet and the Google model on our
newly introduced dataset. Furthermore, our results indi-
cate that diverse training data can significantly enhance
model performance, as the models achieved high accuracy
using a hybrid dataset, combining the KTFE dataset with
our own. The Google ViT model yielded an overall accu-
racy of 94%.

In conclusion, these findings demonstrate the im-
pact that affordable hardware and state-of-the-art model
architectures can have on emotion recognition. This work
shows that leveraging low-cost, low-resolution cameras
with advanced models such as ViTs can make emotion
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recognition systems more accessible and scalable across
varying applications. The study not only highlights the
superiority of ViT models over traditional CNNs but also
emphasises the role of diverse datasets in training ma-
chine learning models. In addition to its affordability,
the dataset’s structured composition, manual annotation
process, and inclusion of participants from five national
backgrounds provide a solid foundation for assessing FER
models under controlled and reproducible conditions.

Further exploration and refinement of ViT models
and low-cost hardware solutions may potentially revolu-
tionise their application in real-world scenarios. Specifi-
cally, future work should investigate lightweight ViT ar-
chitectures optimised for edge devices, explore hybrid
models that integrate CNNs and transformers for improved
efficiency, and evaluate deployment on embedded plat-
forms to assess latency, power consumption, and infer-
ence speed under practical constraints.
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