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Abstract

Autonomous driving (AD) technology promises to revolutionize daily transportation by making it safer, more efficient, and more
comfortable. Its role in reducing traffic accidents and improving mobility is vital to the future of intelligent transportation systems.
AD systems (ADS) are expected to function reliably across diverse and challenging environments. However, existing solutions
often struggle under harsh weather conditions such as foggy, rainy, or stormy circumstances, and mostly rely on unimodal inputs,
thus limiting their adaptability and performance. Meanwhile, multimodal large language models (MLLMs) have shown remarkable
capabilities in perception, reasoning, and decision-making, yet their application in AD, particularly under extreme environmental
conditions, remains largely unexplored. Consequently, this paper proposes MLLM-AD-40, a novel AD agent that leverages prompt
engineering to integrate camera and LiDAR inputs for enhanced perception and control. MLLM-AD-40 dynamically adapts to
available sensor modalities and is built upon GPT-40 to ensure contextual reasoning and decision-making. To support realistic
evaluation, the agent was developed using the LimSim++ framework, which integrates the SUMO and CARLA driving simulators.
Experiments are conducted under harsh conditions, including bad weather, poor visibility, and complex traffic scenarios. The
MLLM-AD-40 agent’s robustness and performance are assessed for decision-making, perception, and control. The obtained results
demonstrate the agent’s ability to maintain high levels of safety and efficiency, even in extreme conditions, using different perception
components (e.g., cameras only, cameras with LiDAR, etc.). Finally, this work provides valuable insights into integrating MLLMs
with AD frameworks, paving the way for fully safe ADS.
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lI. Introduction and efficient deployment critically depends on robust Al-
driven frameworks, including those that synergize with
I.1. General Context IoT and blockchain technologies for real-time decision-

making and secure data exchange [7].

In addition, ADS are expected to operate safely and
reliably in any environment, including urban, rural, and
highway. However, real-world ADS deployment presents
several challenges, particularly for adverse weather condi-
tions such as rain, fog, and low-light, in which traditional
ADS’s perception and control systems struggle to operate.
efficiency, and resilience [1-6]. Autonomous Driving T, address this, modern ADS typically rely on a combi-

Systems (ADS) are poised to become the cornerstone of  pation of heterogeneous sensor modalities, e.g., cameras,
next-generation transportation infrastructures. Their safe

Recent advances that integrate blockchain, artificial in-
telligence (AI), and Internet-of-Things (IoT) technolo-
gies have substantially enhanced the design of secure
and intelligent systems across a wide range of domains,
including smart cities, industrial automation, and vehic-
ular ecosystems, by ensuring data integrity, operational
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LiDAR, and radar, to capture and interpret complex driv-
ing scenes.

To meet the growing demands for safety, efficiency,
and adaptability in ADS, recent research has increasingly
turned to Al-driven approaches, supported by large lan-
guage models (LLMs) and multimodal LLMs (MLLMs)
[8,9]. These models offer advanced perception, reasoning,
and decision-making capabilities. Specifically, MLLMs
combine multimodal data, including images, video, and
audio data, with the advanced reasoning capabilities of
LLMs [10]. Hence, they can act as decision-making agents
for various applications, including medicine, education,
and intelligent transport systems (ITS). MLLMSs can pro-
vide accurate and timely responses to dynamic driving
conditions by processing large volumes of driving data
to understand and predict complex traffic patterns, thus
enabling autonomous vehicles (AVs) to learn from their
environment and enhance their driving performance. In
addition, MLLMs contribute significantly to the develop-
ment of ADS by providing the computational power re-
quired to analyze the driving scene in real time and make
accurate decisions [11].

In this context, various approaches have been pro-
posed to use MLLMs for AD. Indeed, several strategies
have been proposed based on prompt engineering [ 12—14],
fine-tuning [15-19], and reinforcement learning with hu-
man feedback (RLHF) [20-22]. Furthermore, MLLM:s to-
ward AD provisioning could be utilized for perception and
scene understanding [23-26], question answering [27,28],
planning and control [16,29], and multitasking [30].

Despite their diverse methods and applications, MLLMs
experience limitations in ADS. For instance, fine-tuning-
based approaches are computationally expensive and may
result in models overfitting for specific tasks or environ-
ments. Also, RLHF can align models with human pref-
erences, however, it still faces scaling and generaliza-
tion issues beyond particular training data instances. In
contrast, MLLMs, particularly vision language models
(VLMs) such as GPT-40, have shown promising capa-
bilities in tasks that involve perception, reasoning, and
decision-making. The latter can simultaneously integrate
and interpret visual and textual information, enabling in-
teractive and adaptive Al systems.

1.2. Motivation and Problem Statement

Despite the growing use of MLLMs in perception and
decision-making, no existing approach integrates multi-
modal inputs (e.g., LIDAR and camera) using prompt en-
gineering to enable robust autonomous driving in harsh en-
vironmental conditions. This work addresses this gap by
proposing MLLM-AD-40, a flexible sensor-adaptive AD

agent. This work aims to address the following ADS is-
sues:

. Need for weather-robust AD: Even after the rapid
progress in ADS, robust perception and reasoning
under adverse weather conditions remain an open
issue. Accordingly, this work aims to close this gap
by introducing an MLLM-based ADS system that is
resilient to varying environmental conditions.

. Multimodal adaptability and sensor awareness:
Real-world driving requires adaptability to avail-
able sensor inputs. A model that can reason effec-
tively using LiDAR, front/rear cameras, or any com-
bination thereof is necessary.

. Harnessing the reasoning capabilities of MLLMs:
The ability of models like GPT-40 to perform com-
plex reasoning and decision-making when properly
prompted presents an opportunity to enhance ADS,
especially through prompt engineering tailored for
driving tasks.

. Lack of open, reproducible frameworks for AD
testing in harsh conditions: Many existing bench-
marks do not sufficiently simulate diverse weather
and traffic conditions or provide extensibility. In
contrast, this work extends LimSim++ to introduce
a new benchmark within the CARLA simulator for
reproducible testing in challenging weather environ-
ments.

1.3. Contributions and Paper
Organization

To tackle the above challenges, this work introduces MLLM-
AD-40, anovel prompt engineering MLLM-based approach
for AD, which is capable of handling autonomous driving
under any weather condition. The proposed approach in-
tegrates different sensor modalities, including LiDAR and
cameras, allowing the system to adapt according to available
sensor data. Based on prompt engineering, MLLM-AD-40
provides enhanced environment perception, scene under-
standing, reasoning, and decision-making in ADS. Hence,
our contributions can be summarized as follows:

. Unlike previous studies, this contribution integrates
harsh environmental driving conditions into the
CARLA simulator for the first time by leveraging
functions and modules from the LimSim++ frame-
work. This work has been documented and dis-
tributed on GitHub for open public access and re-
producibility [31].

. The proposed MLLM-AD-40 is a novel MLLM-
based AD agent that leverages GPT-40 [32] to drive
perception and control decision-making.
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Through extensive experiments, a performance anal-
ysis of the proposed MLLM-AD-40 in terms of
safety, comfort, efficiency, and speed score metrics,
and under different weather conditions and using
different combinations of sensor data (e.g., front
and/or rear cameras and/or LiDAR).

. The cumulative distribution functions (CDFs) are
used for deeper insight into the agent’s performance
variability.

This combination of prompt engineering, sensor adaptabil-

ity, and resilience to weather is the core contribution that

separates this work from existing MLLM-based AD ap-
proaches.

The remainder of the paper is organized as follows.
Section 2 presents related work that integrate LLMs/M-
LLMs into driving agents in a closed-loop using the CARLA
simulator. Section 3 explains the basic concepts of ADS
and LLM/MLLMs with a focus on the architecture and
functions of GPT-40. Section 4 presents the architec-
ture, main modules, and technical details to integrate an
MLLM agent driver in a closed-loop environment us-
ing LimSim++. Section 5 evaluates the performance of
MLLM-AD-4o in diverse scenarios and conditions. Fi-
nally, Section 6 closes the paper.

2. Related Work

Recently, there has been a significant effort to enhance
the efficiency and reliability of ADS using LLMs and
MLLMs. Among the proposed driving agents, this paper
focuses on related work using prompt engineering. The
authors of [33] proposed “LLM-driver”, a framework inte-
grating numeric vector modalities, into pre-trained LLMs
for question-answering (QA). LLM-driver uses object-
level 2D scene representations to fuse vector data into
a pre-trained LLM with adapters. A language generator
(LanGen) is used to ground vector representations into
LLMs. The model’s performance was evaluated on per-
ception and action prediction using mean absolute error
(MAE) for predictions, accuracy of traffic light detection,
and normalized errors for acceleration, brake pressure,
and steering. In [34], the SurrealDriver framework has
been proposed. It consists of an LLM-based generative
driving agent simulation framework with multitasking
capabilities that integrate perception, decision-making,
and control processes to manage complex driving tasks.
In [35], the authors developed LLM-based driver agents
with reasoning and decision-making abilities, aligned with
human driving styles. Their framework utilizes demon-
strations and feedback to align the agents’ behaviors with
those of humans, utilizing data from human driving ex-
periments and post-driving interviews. Also, the authors

of [36] proposed the Co-driver framework for planning &
control and trajectory prediction tasks. Co-driver utilizes
prompt engineering to understand visual inputs and gener-
ate driving instructions, while it uses deep reinforcement
learning (DRL) for planning and control. In [37], the
authors introduced the PromptTrack framework, an ap-
proach to 3D object detection and tracking, by integrating
cross-modal features within prompt reasoning. Prompt-
Track uses language prompts that act as semantic guides to
enhance the contextual understanding of a scene. Finally,
the authors in [13] proposed HiLM-D as an efficient tech-
nique to incorporate high-resolution information in ADS
for hazardous object localization.

Despite the variety of proposed driving agents, to
our knowledge, no study has fully assessed the perfor-
mance of MLLM-based driving agents within a closed-
loop framework under harsh environmental conditions.
Table 1 summarizes the aforementioned contributions
with a comparison to this work.

3. Background

The key modules associated with an AV are perception,
planning, localization, decision-making, and action or
control as highlighted in Figure 1. The perception module
ensures sensing of the surrounding environment and iden-
tifies the driving scene. The main goal of the localization
module is to estimate with high precision and accuracy the
vehicle position on the map. Path planning and decision
modules establish the waypoints that the vehicle should
follow when moving through the surroundings. The set of
waypoints corresponds to the vehicle trajectory. The ac-
tion and control module deals with the system’s actuation,
such as braking, steering, and acceleration.

Several MLLMs have been developed [9], with a
subset of them suitable for ADS, as discussed in Section
II. In this work, GPT-40 [32] was selected. GPT-4o is
an optimized version of GPT-4 built around the latter’s
foundational transformer architecture with enhancements
in understanding, generating, and maintaining context
across interactions. GPT-40 includes various specialized
modules to improve its operation, namely (i) language
understanding module, (ii) language generation module,
(iii) context management module, (iv) task-specific mod-
ules, and (v) optimization and fine-tuning modules. Pro-
gramming GPT-4o involves the use of application pro-
gramming interfaces (APIs) or software development kits
(SDKs), custom prompts, or fine-tuning and customiza-
tion. In our work, interaction with GPT-40 is performed
via API calls, where a customized prompt to guide the
response of the model is utilized.
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Table I: Summary of related works.

Ref. Contribution Used Models Used Data AD Tasks Performance Metrics Harsh Envi-

ronment

[33] Design and validation of an LLM GPT-3.5; RL agent 160k QA driving pairs Perception and action Traffic light detection No
Driver that interprets and reasons trained with PPO, dataset; Control prediction. accuracy; Acceleration,
about driving situations to generate  lanGen, and trainable Commands Dataset. brake, and steering
adequate actions. LoRA modules. errors.

[34] LLM-based agent in a simulation GPT-3 and GPT-4. Driving Behavior Data; ~ Perception, control, and  Collision rate. No
framework to manage complex Simulation data from decision-making.
driving tasks. CARLA simulator; NLP

libraries.

[35] LLM-based driver agents with GPT-4. Private dataset from a Behavioral alignment; Collision rate, average No
reasoning and decision-making, human driver; NLP Human-in-the-Loop speed, throttle
aligned with human driving styles. library; RL library. system. percentage, and brake

percentage.

[36] Co-driver agent, based on a vision ~ Qwen-VL (9.6 billion CARLA simulation data; ~ Adjustable driving Fluctuations frequency, — Foggy/gloomy;
language model, for planning, parameters), includinga ~ ROS2; Customized behaviors; Trajectory and running time. Rainy/-
control, and trajectory prediction. visual encoder, a dataset. and lane prediction; gloomy

vision-language adapter, Planning and control.
and the Qwen LLM.

[37] PromptTrack framework for 3D VoVNetV2 to extract NuPrompt for 3D 3D object detection and  Average multiple object No
object detection and tracking by visual features; perception in AD. tracking; Scene tracking precision
integrating cross-modal features RoBERTa to embed understanding. (AMOTA), and identity
within prompt reasoning. language prompts. switches (IDS).

[13] High-resolution scene BLiP-2; Q-Former; DRAMA dataset; Risky object detection; ~ Mean intersection over ~ No
understanding using proposed MiniGPT-4. Pytorch; Visual Encoder;  Vehicle intentions and union (mloU) for
HiLM-D. Query detection module; motions’ prediction. detection; BLEU-4,

ST-adapter module. METEOR, CIDER, and
SPICE for captioning.

This Implementation of harsh GPT-4o. Dedicated Prompt. Perception and Safety, comfort, Heavy rain;

work environment scenarios and decision-making. efficiency, and speed Storm;
performance evaluation of an scores. Foggy;
MLLM-based driving agent. Wetness;

Good

Gathering Data from
Surroundings

Cameras

Lidars Inputs

Radars

Ultrasonic

o

Perception E> Path
Planning&Decision l:'\> CA?:TE;?
Making
Localization [>

Figure |I: Typical architecture of ADS.

4. Materials and Methods:
Proposed MLLM-Based Driving
Agent in a Closed-Loop
Environment

This section presents the tools used to integrate the pro-
posed MLLM-based driving agent, also known as MLLM-
AD-4o0.

4.1. LimSim++ Framework

LimSim++ is a closed-loop framework for deploying MLLLMs
for autonomous driving, where multimodal data, such as
text, audio, and video, can be analyzed, and then accu-
rately react to driving scenarios [38]. LimSim++ inte-

grates algorithms for real-time decision-making, obstacle
detection, and navigation, making it an interesting tool for
designing, developing, testing, and refining ADS.

To do so, LimSim++ simulates a closed-loop sys-
tem with specifications of the environment, including
road topology, dynamic traffic flow, navigation, and traf-
fic control. The MLLM agent is based on prompts that
provide real-time scenario information in visuals or text.
The MLLM-supported driving agent system can process
information, use tools, develop strategies, and assess it-
self. Figure 2 depicts the architecture of Limsim++ and
explains its main modules as follows:

. Simulation system: It gathers the scenario informa-
tion from SUMO and CARLA, and packages it as in-
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put for the MLLM, such as visual content, scenario
cognition, and task description.

Driver Agent: It communicates with the “simula-
tion system” to make driving judgments and uses
MLLMs to interpret them. Data is represented as
prompts for MLLMs to make suitable driving de-
cisions. The outputs of MLLMs influence vehicle
behavior and are kept in the case log system for
knowledge accumulation. Following the simula-
tion, the decisions are evaluated as follows: Those
that performed well are immediately added to the
memory, while poor decisions are added after reflec-
tion. Building upon the results of the previous ex-
periment, the reflection module refines the incorrect
decision-making process by incorporating expert
experience. The modified decision results are then
added to the Driver Agent’s memory modules, serv-
ing as driving experiences to provide a few-shot ex-
amples for the agent in subsequent decision-making
processes. This ensures continuous improvement
and knowledge accumulation within the system.

The MLLM-AD-40 architecture was designed by

customizing the above modules as follows:

M

2

3)

The original “MPGUL.py” file within LimSim++
and its related dependencies are modified to include
the visualization of six cameras (rather than the de-
fault three front cameras) in the autonomous driving
simulation. Hence, a comprehensive view is pro-
vided, which is crucial to evaluating the perception
capability of the driving system, analyzing/debug-
ging the AV’s sensor inputs, and decision-making.
The default “VLM-Driver-Agent” was updated to al-
low changes in the scenario and to integrate new sen-
sors and environmental conditions.

To automate the setup of different weather condi-
tions, a novel function in the CARLA simulator was
created .

5. Experimental Results

5.1. Definition of Metrics and
Parameters

To accurately assess the AD performance of the proposed
MLLM-AD-4o, the following performance metrics (called
scores) are introduced:

Safety score: The safety level is commonly assessed
through Time-to-Conflict (TTC), which is a mea-
sure of the time remaining until a potential collision
occurs between two moving objects, assuming no
changes in their current trajectories. It serves as an

indicator of the urgency to take corrective actions
to avoid conflict. When TTC falls below a specific
threshold, a potential risk warrants penalties. The
safety score can be given by

1, if 7, >
Safety score = i 7,Tth (1)
Te/T, otherwise,

where 7. is the TTC of the AV and 7, is the threshold
value of TTC. Higher values reflect safer traveling.
Comfort score: It evaluates the smoothness of the
AV ride. Using empirical data, reference values
can be determined for different driving styles, such
as cautious, normal, and aggressive. It is com-
puted as the average of the summation of acceler-
ation score (acc_score), jerk score, lateral acceler-
ation score (lat_acc_score), and lateral jerk score
(lat_jerk score), as shown below

i (acc_score + jerk_score ©)

Comfort_score =
+ lat_acc_score + lat_jerk_score).

A higher comfort score means that traveling is smoother.
Efficiency score: Driving efficiency is computed
according to the vehicle’s speed. In regular traffic
conditions, the AV should maintain a speed at least
equivalent to the average speed of surrounding ve-
hicles. In sparse traffic conditions, the AV should
approach the road’s speed limit for efficiency. This
score is computed as (3).

1.0, ifv, >v*

Ve
v*?

Efficiency score = )
otherwise,

where v, represents the speed of the AV and v* €
{Vawg, Viimit } 1s the targeted speed for efficiency,
being v4.4 as the average speed of surrounding ve-
hicles, and v;;,,,;: as the road’s speed limit. A high
value means efficient traveling.

Speed score: The speed limit score (or speed score)
penalizes the vehicle for exceeding the speed limit.
This score is set to 0.9 when the AV exceeds the
speed limit and 1 otherwise. This score is expressed
as

Nbr_frames_with_speeding ( 4)
Total_nbr_frames ’

Speed score =1 — 0.1 x

where “Nbr_frames with_speeding” is the number of
captured frames while speeding, and “Total nbr_frames”
is the total number of captured frames.

In the following simulations, we set up @ = as =

0.25, ag = 0.5, and vy = 50 km/h (i.e., 13.89 m/s).
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Figure 2: Integration of MLLM-AD-40 in LimSim++ (adapted with permission from [38]).

5.2. Interaction with GPT-40 API

To use the GPT-40 API with prompts to process the driv-
ing environment, with data mainly collected from CARLA
and SUMO, the following steps are conducted: [31]:

(1) Install the OpenAl package and get an OpenAl API
key.

(2) Capture images from the front and back cameras (in
CARLA), save them in a suitable format, and then
convert them for API submission.

(3) Prepare the API request, i.e., send the prompt with
the image data to the GPT-40 API. The prompt de-
scribes what we want the model to do with the im-
ages and environmental data. Specifically, we ask
the model to analyze the surroundings and make a
driving decision. Figure 3 presents an example of
using prompts in simulated scenarios that use six
cameras. As illustrated, the prompts start with a
clear role definition through the use “You are GPT-
40, a large multi-modal model...”; which enforces
the model to behave like a decision-making assis-
tant in autonomous driving, emphasizing responsi-
bility, situational awareness, and accuracy. Then,
the prompt explicitly defines the inputs (Front-view
image, Back-view image, Navigation information,
and a list of possible actions) and instructs GPT-40
to describe the visual scene, to reason about the next
move using navigation data and visual inputs, and
to decide on the next action. Finally, the prompt re-
quires the output format to be structured into three

“4)

)

clear sections corresponding to Description, Rea-
soning, and Decision. This structure encourages
explainability and transparency in the model’s deci-
sions. Moreover, the decision must match exactly
one item in the action set, e.g., Idle (IDLE), Accel-
eration (AC), Deceleration (DEC), Turn_Left (TL),
and Turn_Right (TR). This is critical to avoid any
ambiguity and to reduce the number of consumed
tokens.

GPT-40 API processes the gathered data (e.g., navi-
gation info, lane info, vehicle info, and surrounding
info) to make a decision, then sends a response to
the MLLM agent in the form of a driving action.
The agent converts the action received from the
GPT-40 API to behavior, then the trajectory planner
module updates the path according to the decision
made by the driver agent, to be sent to the CARLA
system and executed. Figure 4 below illustrates an
example of GPT-40’s decision-making in a simu-
lation under “Stormy weather”. Accordingly, the
decision taken is “Accelerate” despite the stormy
weather with reduced visibility. In making this de-
cision, the GPT-40 API considered the absence of
obstacles directly ahead or in adjacent lanes in the
processed images, along with the vehicle’s current
speed and location as specified in the prompt. It
concluded that acceleration is appropriate in this sit-
uation due to the lack of nearby hazards, the safe
road surface visibility, and the need to maintain ef-
ficient traffic flow.
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Prompt:: in case of using Front and back cameras

will select the appropriate action output from the action set.
the action, e.g. "AC’, "IDLE" etc.

Your answer should follow this format:
## Description

## Reasoning

## Decision

You are GPT-40, a large multi-modal model trained by OpenAl. Now you act as a mature driving assistant, who can give accurate and correct
advice for human driver in complex urban driving scenarios. You'll receive some images from the onboard camera.

You'll need to make driving inferences and decisions based on the information in the images.

At each decision frame, you receive navigation information and a collection of actions.

You will perform scene description, and reasoning based on the navigation information, the front-view image and back-view image. Eventually you

Make sure that all of your reasoning is output in the “## Reasoning" section, and in the ‘## Decision" section you should only output the name of

Your description of the front-view image, and your description of the back-view image.
reasoning based on the navigation information, the front-view image and the back-view image.

one of the actions in the action set.(SHOULD BE exactly same and no other words!)

Figure 3: Prompt used by GPT-40 (For AV with six cameras).

5.3. Setup of Weather Conditions

This work considered, in addition to “Good weather”, four
harsh weather conditions, namely ‘“Heavy rain”, “Storm”,
“Foggy”, and “Wetness”. A new function in the CARLA sim-
ulator, named “set weather”, is developed to configure differ-
ent weather conditions. This function has eight parameters:

. Cloudiness: The amount of cloud cover in the sky.
A high value means more clouds.

. Precipitation: The intensity of the rain. A high
value means heavier rain.

. Precipitation_deposits: The amount of water that
accumulates on the ground due to precipitation. A
high value means an important accumulation.

. Wind_intensity: The strength of the wind. A high
value means stronger wind.

. Sun_altitude _angle: The angle of the sun above the
horizon. Lower values can simulate dawn, dusk, or
low-light conditions.

. Fog density: The density of fog in the environment.
A high value implies thicker fog.

. Fog distance: The distance at which the fog starts
to become noticeable.

. Wetness: The wetness of the road surfaces. A high
value makes the roads wetter.

In Table 2, we summarize the parameters’ values to
set up each weather condition using the function
“set_weather” [31].

5.4. Integration of Semantic LiDAR in
LimSim++

CARLA supports various sensing tools, including tradi-
tional LiDAR and semantic LiDAR. Traditional LIDAR

provides raw distance measurements in the form of a point
cloud, without an inherent understanding of the objects in
the scene. In contrast, semantic LiDAR provides both the
point cloud and an understanding of what each point rep-
resents, thus simplifying tasks that involve scene under-
standing, object recognition, and data processing reduc-
tion. Semantic LiDAR is selected within this work. To
add the latter in the perception environment within Lim-
sim++, several steps should be followed [31]:

(1) Attach “Semantic LiDAR” function to the AV and
gather data in CARLA.

(2) Save and process LiDAR data.

(3) Add“Semantic_ LiDAR?” data to the prompt request.

Table 2: Parameters to set up the weather conditions.

Case  Set_Weather Parameters Values

Heavy self.set weather(cloudiness=80.0,  precipitation=70.0,

Rain precipitation_deposits=60.0, wind_intensity=30.0,
sun_altitude angle=45.0, fog_density=10.0,
fog_distance=10.0, wetness=80.0)

Storm  self.set_ weather(cloudiness=80.0, precipitation=100.0,
precipitation_deposits=100.0,  wind_intensity=100.0,
sun_altitude angle=20.0, fog_density=20.0,
fog_distance=10.0, wetness=80.0)

Fog self.set_weather(cloudiness=40.0, precipitation=5.0,

precipitation_deposits=5.0,
sun_altitude angle=60.0,
fog_distance=3.0, wetness=10.0)

wind_intensity=10.0,
fog_density=70.0,

Wetness self.set_weather(cloudiness=30.0,
precipitation_deposits=0.0,
sun_altitude_angle=70.0,
fog_distance=0.0, wetness=100.0)

precipitation=0.0,
wind_intensity=0.0,
fog_density=0.0,

Good  self.set weather(cloudiness=00.0,

Weather precipitation_deposits=00.0,
sun_altitude _angle=60.0,
fog_distance=20.0, wetness=00.0)

precipitation=00.0,
wind_intensity=00.0,
fog_density=00.0,
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KT TrafficSimulator

W CAM_FRONT_LEFT

¥ Prompts

#E Description:

Current lane description:

You are driving on a road with 5 lanes in your
direction, and you are currently driving in the numbe
lane from the left. The length of the current lane is
171.476 m. The limit speed of the current lane is 13.4
mes.

Your current state:

Your current position is (671,517, 353.606), speed is
859 m/s, acceleration is -@.8 m/s5*2, and lame positici
is 5.275 m.

## Navigation:
Stay in the current lane and continue straight ahead.
## Actions:

Your avallable actions are:

Acceleration - accelerate the vehicle Actionm_id: 1
IDLE - remaln in the current lane with current speed
Action_id: &

Deceleration — decelerate the vehicle Action_id: 2
Turn-left - change lane to the left of the current lai
Action_id: 3

Turn-right - change lane to the right of the current
lane Action_id: 4

¥ Reasoning and decision

## Description
The images depict a rainy wrban environment with wet roads and reduced wisibility. The frent and back view
images show & multi-lane road with no immediate obstacles directly ahead, There 15 a light blue car wisible
in the left back and back camera images, which appears to be in the lane to the left of the current
position.

FE Reasoning

* W ¥ CAM_BACK_RIGHT

Figure 4: Example of autonomous driving in stormy weather (For AV with six cameras).

1. and Head Conditions#**: The rainy weather and wet road conditions swggest that maintaining a
cautious speed 1is important to aveid skidding or losing control.

2. #=Current Speed and Lanes: The current speed of 2.@59 m/s is well below the lane speed limit of 13.89
mfs. The nawigation information indicates to stay in the current lane and continue straight ahead.

3. #*Surrounding Traffic#*: The light blue car in the adjacent lane does not pose an immediste threat to
the current lane, There are ng visible obstacles or wehicles directly ahead in the curreni lane.

4, #*Safety Considerations#*: Given the low speed and the need to maintain caution due to the weather,
accelerating slightly to approach a more reasonable speed within the lane limit while maintaining control
is advisable.

#F Decision

hcceleration
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5.5. Simulation Results and Discussion

This section assesses the performance of the proposed
MLLM-AD-40 autonomous driving agent in different con-
ditions. Each experiment is built with the same scenario
of our AV driving between points A and B, where it travels
on multilane main roads and has to maneuver in curves.
The autonomous driving agent has to make one decision
among five possible decisions in each time frame, includ-
ing idle (no change in current behavior), acceleration, de-
celeration, turn left, or turn right.

Figure 5a—d presents the cumulative distribution
functions (CDFs) for the safety, comfort, efficiency, and
speed scores/metrics, respectively, under various weather
conditions, when 3 cameras are used for autonomous driv-
ing by the proposed MLLM-AD-40 method'. Figure 5a,
illustrates that when the weather is good (blue line), the
agent takes a riskier behavior that may cause collisions
than in a harsh condition. This also impacts the passen-
gers’ comfort during travel as shown in Figure 5b. Nev-
ertheless, in good weather, the driving behavior is the
most efficient as shown in Figure 5c and it aligns with the
speed performance depicted in Figure 5d, This trade-off
highlights that while the AV may be driven more aggres-
sively and with less comfort, its efficiency improves as it
aligns more closely with the surrounding traffic’s speed.
In contrast, in harsh weather conditions, e.g., heavy rain
(green line) or wetness (dark yellow line), safety is en-
forced through slower driving, which translates into a bet-
ter comfort score, offering a smoother and more cautious
ride, at the expense of degraded efficiency and speed per-
formances.

Among the weather conditions, we notice in Figure 5
that the best safety CDF is achieved in heavy rain (green
line), the best comfort CDF in stormy weather (pink line),
the best efficiency CDF in good weather, and the best
speed CDF in all of the foggy, heavy rain, and stormy
weather conditions (red triangle). This suggests that the
MLLM-AD-40 driving agent considers heavy rain the
most unsafe environment, requiring low-speed traveling.
Also, traveling can be smooth in stormy weather, while
driving is most efficient in good weather. Finally, in fog-
gy/heavy rain/storm conditions, the agent is more likely
to respect the speed limits as it favors slower driving to
guarantee security, which is not the case in good and wet
weather conditions. These results reflect the trade-offs
the MLLM-AD-40 agent makes between various perfor-
mance scores, under different weather patterns.

Figure 6a—c, depict the CDFs of the safety, comfort,
and efficiency scores when 6 cameras (3 front + 3 rear) are
used by the AD agent. In good weather, MLLM-AD-40
now achieves the best safety CDF performance (blue tri-

angle), at the expense of comfort and efficiency. Indeed,
the additional information brought by the 3 rear cameras
makes the agent more cautious regarding the behavior of
the surrounding vehicles, which was not possible when it
only relied on 3 cameras. This is confirmed with the speed
CDF result (purple line) in Figure 5d, which is higher than
that of the CDF of the 3 cameras. According to Figure 6b,
the best CDFs are realized in stormy/foggy weather (with
a preference for stormy) at the expense of efficiency and
safety. Indeed, in these situations, the AD agent is more
likely to drive smoothly with minor behavior changes in
response to poor visibility, with a higher safety risk and re-
duced efficiency, due to misalignment with the surround-
ing road traffic behavior. Moreover, the best CDF effi-
ciency is obtained in wet conditions, as shown in Figure 6c¢.
Indeed, with the knowledge of its 6 cameras, the AV main-
tains a speed closer to the average of other vehicles by
continuously adapting to the dynamics of the road and
surrounding traffic. This is validated through the results
in Figure 5d where the 6 cameras’ speed CDF is better
than the 3 cameras’ one in wetness. However, as illus-
trated in Figure 6a,b, this behavior negatively impacts the
safety and comfort scores. In summary, the addition of
the rear cameras enhances the vehicle’s ability to perceive
and respond to potential collision threats, particularly in
challenging weather conditions.

Figure 7a—c illustrate the CDFs of the safety, com-
fort, and efficiency scores, when the AD agent is equipped
with 3 (front) cameras only, 6 (3 front + 3 rear) cam-
eras only, 3 (front) cameras + LiDAR, and 6 (3 front
+ 3 rear) cameras + LiDAR, respectively, operating in
heavy rain conditions. The best safety CDF is obtained
when the LiDAR is used with 3 cameras (green triangle
in Figure 7a). Indeed, activating the LiDAR in adverse
weather conditions enhances the system’s awareness of
its environment, leading to more responsible driving ac-
tions and improved safety. Nevertheless, the safety and
efficiency of CDFs degrade when LiDAR is activated with
6 cameras. This suggests that rear cameras’ information
might distort the agent’s comprehension of its surround-
ings when combined with LiDAR. The best comfort score
is also achieved when 3 cameras are activated with LIDAR
(green line in Figure 7b), while the best efficiency score is
realized with a 3-camera system (blue line in Figure 7c).
Nevertheless, the activation of LiDAR with the 3 cam-
eras (green line in Figure 7c) realizes similar efficiency
CDF performance to the latter. Based on these results, the
activation of LiDAR with cameras should be triggered
promptly, under particular conditions, and with specific
configurations, as the full combination of cameras with Li-
DAR does not necessarily lead to better AD performances.
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Figure 5: CDFs of MLLM-AD-40 scores (Front cameras).

To quantitatively assess the scalability and latency
implications of querying GPT-40 under different sensor
configurations, we plot in Figure 8 the prompt token load
per frame for different sensor configurations (3 cameras,
6 cameras, 3 cameras plus LiDAR, and 6 cameras plus
LiDAR) in heavy rain weather.

As shown, the prompt size increases with the num-
ber of sensors. Specifically, configurations that include
LiDAR contribute significantly to the token count, reach-
ing around 1850 tokens for the “6Cam+LiDAR” setup,
while simpler configurations, e.g., “3 Cams”, consume
under 800 tokens. This trend illustrates a linear scalabil-
ity pattern in prompt size with sensor complexity, which
affects the API querying time. Given that OpenAI’s GPT-
40 API latency is partially a function of input prompt
size, these findings allow us to quantify a trade-off be-
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O
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(d) CDF of speed score

tween perception fidelity and real-time responsiveness.
For example, at a 30 frame-per-second (FPS) rate, using
“6Cam+LiDAR” could saturate the API token limits or in-
troduce delays depending on the network bandwidth and
batching strategies.

To further explore the latency trade-off in a realistic
low-bandwidth setting, we conduct an additional exper-
iment to evaluate token usage and inference time when
querying GPT-40 through its API. The results, summa-
rized in Figure 9, present four subplots capturing prompt
tokens (top-left), completion tokens (top-right), total to-
kens (bottom-left), and total response time (bottom-right)
for 3-camera and 6-camera sensor configurations. We no-
ticed that increasing the number of cameras leads to higher
prompt and completion token counts, which correlate with
increased total token counts. Nevertheless, the total re-
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Figure 6: CDFs of MLLM-AD-40 scores (Front+rear cameras).
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Figure 7: CDFs of MLLM-AD-40 scores (Combinations of cameras with LiDAR; Heavy rain).

Pi t Tok . ..
2000 777"’2"”"75*7 perception and safe control decisions through prompt en-
gineering across diverse environmental conditions. Harsh

iso0f———
Heany Rain (8 Carme weather scenarios were integrated into the CARLA sim-

Heavy Rain (6 Cams)

‘ : Ei:ﬁgi:ﬁég:ﬂ;ﬁ:{fﬂgﬁﬁ; ulator through the LimSim++ framework, enabling the

Moo u00 120 1000 Jao - aso0 a0 170 180 evaluation of MLLM-AD-40 with different sensor con-
figurations. For clarity, the performances have been as-

sessed in terms of safety, comfort, efficiency, and speed
score CDFs. The obtained results prove that combining
front and rear cameras’ data significantly improves perfor-
mance compared to single-view configurations, in clear

Figure 8: Comparison of token load (different sensor settings,

heavy rain).

sponse time is shorter with 6-camera data, probably due
to the model producing shorter completions, because of a  Weather. Moreover, integrating LIDAR with a moderate

richer initial context. number of cameras (e.g., only three) yields optimal per-
These results emphasize the nuanced trade-off be- formance in different weather conditions. In contrast, ex-
tween richer multimodal context and token budget con- ~Cessive sensor inputs, e.g., from LiDAR and six cameras
straints, a key consideration for real-time deployment of simultaneously, can be counterproductive. These find-
ings demonstrate the practicality of MLLM-AD-40 for

LLM-based autonomous driving agents.
AD and the importance of context-aware sensor config-
6. Conclusions uration. In future work, we will expand our framework
to more complex traffic scenarios and explore the use

This work introduced MLLM-AD-40, anovel AD agent of lighter MLLMs that are better adapted for real-time

based on GPT-40, capable of performing accurate AV  decision-making.
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Figure 9: Comparison of prompt tokens (top-left), completion tokens (top-right), total tokens (bottom-left), and total response time
per frame (bottom-right) when using 3 or 6 cameras.
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