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Abstract

The advent of 5G networks has facilitated various Industry 4.0 applications requiring stringent Quality-of-Service (QoS) demands,
notably Ultra-Reliable Low-Latency Communication (URLLC). Multi-Access Edge Computing (MEC) has emerged as a key tech-
nology to support these URLLC applications by bringing computational resources closer to the user, thus reducing latency. Mean-
while, Network Function Virtualization (NFV) supports 5G networks by offering flexibility and scalability in service provisioning
across various applications. Despite their benefits, MEC networks must adapt to dynamically fluctuating user demands and varying
workloads, which can create challenges in maintaining QoS. This paper addresses the Virtual Network Function (VNF) placement
problem in MEC networks, focusing on minimizing costs while ensuring QoS through VNF reuse. We propose a novel solution
based on the Deep Transformer Q-network (DTQN) algorithm, leveraging reinforcement learning to optimize VNF placement and
redeployment. Extensive simulations demonstrate that our DTQN algorithm outperforms baseline approaches, achieving up to a 9%
improvement over the D3T-based method and up to 56% over the DQN-based method in terms of average rewards under specific
scenarios. This results in significant improvements in cost efficiency, resource utilization, and QoS maintenance.

Keywords:
network function placement; network function chaining; deep transformer Q-network (DTQN); reinforcement learning; edge com-
puting; service migration.

|I. Introduction Two key technologies have emerged to support the
flexible and cost-effective provisioning of applications
while ensuring QoS requirements, namely Network Func-

tion Virtualization (NFV) and Multi-Access Edge Com-

The advent of the 5th generation (5G) networks has
facilitated various Industry 4.0 applications, including

connected and autonomous vehicles, remote surgery,
industrial automation, and mission-critical Internet-of-
Things (IoT) services. These applications, classified as
Ultra-Reliable Low-Latency Communication (URLLC)
in 5G, demand stringent Quality-of-Service (QoS) require-
ments, notably low latency and high reliability
[1].

puting (MEC). On the one hand, NFV has become funda-
mental for service provisioning, enabling software-defined
virtual networks to offer flexibility and scalability. Deliv-
ering a specific service requires composing and mapping
an ordered chain of Virtual Network Functions (VNFs) to
the underlying network infrastructure [2]. On the other
hand, MEC alleviates resource demands and reduces user-
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perceived latency by extending cloud computing capabili-
ties and IT services to the edge of the network [3]. Despite
their advantages, MEC nodes possess comparatively lim-
ited storage and computational resources compared to the
cloud.

In this context, a significant challenge in deploying
VNFs for URLLC applications in MEC networks arises
from the dynamic nature of user demands, application re-
quirements, and traffic conditions, which may lead to sev-
eral violations of QoS requirements. Furthermore, the typ-
ically ephemeral nature of VNFs means that deployed in-
stances become inactive or must be deactivated once the
related service is completed, thereby incurring additional
costs or leading to inefficient resource usage [4].

In the literature, typical solutions for NFV deploy-
ment in MEC networks involve modifying the deployed
VNFs through various redeployment schemes, including
VNF migration, VNF sharing, and scaling [5—10]. VNF
migration is frequently used to achieve load balancing
in congested networks, conserve energy in underutilized
segments, ensure reliability during physical node failures,
and minimize costs. However, VNF migration has to
guarantee stringent latency requirements between VNFs
within a VNF chain. Traditional migration strategies typ-
ically move a single VNF at a time, which incurs high
transmission costs and introduces potential service disrup-
tions due to the resource overhead required for migration,
such as processing power and bandwidth to transfer VNF
states. These inefficiencies can degrade the user expe-
rience, strain network resources, and potentially lead to
service-level agreement (SLA) violations [11]. To miti-
gate these drawbacks, recent research by Afrasiabi et al.
[12] has proposed cluster migration, where groups of cou-
pled VNFs are migrated together within a single physical
node or across multiple nodes. This approach addresses
some inefficiencies associated with single VNF migra-
tions, yet the challenge of maintaining reliable service
delivery remains a significant concern. Additionally, fre-
quent migrations, whether from single VNFs or clusters,
can lead to resource fragmentation, further reducing over-
all network efficiency and complicating resource manage-
ment.

In contrast, reusing VNFs ensures consistent ser-
vice delivery, minimizes the risk of interruptions, reduces
downtime, and eliminates the need to migrate VNF states
and data across nodes. It leverages tested and stable
configurations to enhance the reliability and reduce the
complexity of fault management. VNF reuse is cost-
efficient as it avoids migration-related transmission and
operational costs, maintains low latency by keeping VNFs
in optimal locations, and enhances resource utilization.

However, only a few studies explored reuse schemes
[4,13,14], and generally overlooked the impact of traf-
fic redirection on the operation and reliability of Service
Function Chains (SFCs). Moreover, most existing work
proposed heuristic algorithms that may require long exe-
cution times, yielding only suboptimal solutions and fac-
ing exponential computational complexity with network
scaling.

Consequently, this paper focuses on solving the prob-
lem of SFC/VNF placement in MEC networks for mission-
critical applications, aiming to guarantee QoS require-
ments through VNF redeployment and reuse schemes.
Given that the SFC/VNF placement problem is NP-hard
[15-17], the complexity of our problem, which includes
the placement, recomposition, and redeployment
of SFC/VNF, is also NP-hard. To address it, we formu-
late the problem as a Markov Decision Process (MDP)
and solve it using a novel reinforcement learning (RL)-
based framework. Specifically, we propose a novel and
intelligent VNF/SFC placement strategy based on the
deep Transformer Q-network (DTQN) algorithm. This
approach is designed to learn complex data representa-
tions, enabling accurate and efficient decision-making. In
particular, we aim to minimize the costs associated with
VNF placement/redeployment (e.g., migration, removal)
while favoring VNF reuse to reduce service disruptions
and satisfy QoS requirements.

Our contributions can be summarized as follows:

1. We formulate the VNF/SFC placement problem in
MEC networks for mission-critical applications us-
ing Mixed-Integer Non-Linear Programming
(MINLP).

2. Given the NP-hardness of the formulated problem,
we propose anovel DTQN-based approach to solve it.

3. We perform extensive simulations that demonstrate
the efficiency of our solution in terms of cost, VNF
placement, reuse, and migration of VNF, as com-
pared to the baseline approaches.

The remainder of the paper is organized as follows:
Section 2 discusses the related work. In Section 3, we
present the system model, while Section 4 formulates the
VNF placement problem. Section 5 details our proposed
solution, and Section 6 provides the simulation results. Fi-
nally, Section 7 concludes the paper.

2. Related Work

To overcome the critical challenges of URLLC applica-
tion provisioning in MEC networks, it is essential to meet
key requirements such as minimizing latency to fulfill
stringent QoS demands, reducing operational costs to en-
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sure scalability, and maintaining the reliability of services
through effective VNF reuse and minimal service dis-
ruptions. Comprehensive overviews of NFV placement
strategies within MEC networks have been provided in
surveys [18-21].

In the context of latency minimization and cost ef-
ficiency, the advent of NFV and MEC as fundamental
technologies for agile network service deployment in 5G
has led to extensive research. Early studies primarily em-
ployed heuristic and optimization-based approaches to
address these challenges. For example, Yala et al. [22]
used a genetic algorithm to balance the conflicting ob-
jectives of minimizing latency and maximizing availabil-
ity in NFV-MEC networks. Kiran et al. [14] focused
on reducing placement and resource costs through co-
ordinated VNF placement, demonstrating its effective-
ness in lowering overall costs. Jin et al. [23] addressed
VNF chain deployment in MEC environments by formu-
lating the problem as a Mixed Integer Linear Program-
ming (MILP) model to optimize resource consumption.
They proposed a two-phase deployment scheme: a con-
strained depth-first search algorithm to identify feasible
paths and a path-based greedy algorithm to maximize re-
source reuse while minimizing new allocations. Simula-
tions revealed that this method achieved near-optimal per-
formance, reducing resource consumption by up to 25.6%
compared to heuristic baselines while meeting latency
constraints. Similarly, Afrasiabi et al. [12] proposed clus-
tering coupled VNFs and migrating them within or across
physical nodes using two look-ahead heuristics to reduce
embedding costs and avoid local optima. Despite their
merits, these approaches do not address reliability issues
comprehensively.

The increasing complexity and dynamism of net-
work environments necessitate scalable and adaptive so-
lutions. To sustain service performance, researchers have
widely studied reconfiguration-based strategies, such as
VNF migration. Li et al. [11] introduced a latency-aware
migration strategy to reduce end-to-end latency in SFC
deployments, while Cho et al. [24] investigated optimiza-
tion techniques for VNF migration in dynamic cloud envi-
ronments. Kuo et al. [25] proposed a joint VNF place-
ment and path selection approach to maximize served
traffic demands, using a stress-testing-inspired algorithm
to adapt resource allocation dynamically. This method
demonstrated superior performance in terms of link and
Virtual Machine (VM) resource utilization, outperform-
ing traditional heuristics. However, scalability remains a
challenge, as many of these solutions struggle to maintain
optimal performance in highly dynamic conditions. Zhu
etal. [26] similarly noted that while these strategies can be

effective, they often fall short in environments requiring
rapid adaptation to changing conditions.

An alternative strategy to enhance reliability and
reduce frequent redeployments or migrations involves
reusing VNFs. Addressing this gap, Doan et al. [27]
proposed the Subchain-Aware NFV Service Placement
(SAP) model, which optimizes network function reuse
in MEC environments. By focusing on subchain reuse,
SAP reduces configuration and deployment costs while
enhancing reliability. The authors developed Tabu-SAP,
a Tabu search-based solution, and implemented the Au-
tomated Provisioning framework for MEC (APMEC) on
OpenStack. Tabu-SAP demonstrated scalability and sup-
ported eight times more SFC requests, achieving over a 50
percent cost reduction compared to start-of-the-art meth-
ods.

To address the limitations of traditional approaches,
recent studies have incorporated machine learning (ML)
and RL methods, which offer improved adaptability and
scalability. For instance, Abouaomar et al. [28] applied
deep reinforcement learning to optimize service migration
in MEC vehicular environments, minimizing latency and
service disruptions. Similarly, Subramanya et al. [29]
utilized neural networks to enable auto-scaling of VNFs
based on traffic demand and latency requirements. While
these approaches show promise, traditional ML methods
often face challenges in stability, scalability, and effi-
ciently capturing long-term dependencies in dynamic set-
tings.

Transformer-based techniques have emerged as a
promising solution to address these challenges. Wu et
al. [30] introduced the Double Deep Q-Network Decision
Transformer (D3T), which combines a Decision Trans-
former (DT) with a Double Deep Q-Network (DDQN).
The DDQN generates trajectory data for offline training,
while the DT models sequences to optimize placement
decisions, effectively handling high-dimensional state-
action distributions and mitigating issues such as error
propagation and value overestimation. D3T achieved a
25% reduction in rejection ratio and a 7% reduction in
delay compared to previous methods. However, it does
not fully address reliability or redeployment strategies to
ensure continuous service delivery.

In summary, the existing body of research on NFV
and MEC highlights substantial progress in optimizing
service deployment for 5G applications, particularly in
latency-sensitive and cost-efficient scenarios. Early heuris
tic and optimization-based approaches provided founda-
tional insights but struggled with scalability and adapt-
ability to dynamic environments. More recent reinforce-
ment learning methods have improved decision-making in
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such dynamic environments, yet often fail to fully address
temporal dependencies and the complexity of large-scale,
mission-critical applications. Transformer-based models
have shown promise in overcoming these limitations, of-
fering superior capabilities for handling high-dimensional
and temporally dependent data. In this context, our work
advances the state of the art by introducing a novel DTQN-
based framework that leverages the strengths of transform-
ers and reinforcement learning. This approach uniquely
focuses on optimizing VNF placement through reuse and
intelligent redeployment, addressing critical gaps in scal-
ability, cost efficiency, reliability, and QoS adherence.

3. System Model

We consider a two-tier hierarchical MEC network model.
The lowest tier consists of user devices such as sensors,
smart gadgets, and cameras that generate and transmit
real-time data. This data is forwarded to edge nodes in
the above MEC layer for processing. Indeed, the MEC
nodes can compute tasks, store data, and network with
other nodes.

We assume that time is discretized into periods 7 =
{1,2,...,T}, with each period denoted by t € T. At
the start of each period, placement decisions are made to
ensure the provision of NFV-based services within pre-
defined QoS requirements. The system must decide, for
each computing request, whether to utilize existing VNF
instances or create new ones at time ¢. Reusing instances
incur a reuse cost, which is generally lower than the instan-
tiation cost of a new VNF instance. The length of each pe-
riod strikes a balance between the system’s responsiveness
to dynamic changes in user demands and network condi-
tions and the computational overhead incurred.

The physical network is modeled as a directed graph
G = (W, L), where N represents the physical MEC nodes
and L represents the physical links. Each node n € N is
characterized by the tuple {c,,Cy,, ap, }, Where ¢, repre-
sents the maximum computing resource capacity, C,, the
unit resource cost, and a,, its reliability. Each link [ € £
is characterized by the tuple {b;, d;, C;, «; }, where b; de-
notes the available bandwidth capacity, d; indicates the
link delay, C; represents the unit bandwidth cost, and o
represents the reliability of the link /.

Let KC be the set of available VNF types. Assume
a licensing model where a maximum number ¥ of VNF
instances may be instantiated across the network for VNF
k,withi € {1,2,...,I¥}. Each VNF type k € K is char-
acterized by the tuple {¢*, u*, c* CF CiF ok}, where ¢*
represents the processing demand, u* and c* represent the
resource and processing capacities, C¥ is the instantiation

cost for creating a new instance on node n, C4* is the cost
of reusing instance 4 on node n, and o* represents the re-
liability of VNF k.

Define the binary matrix X(t) € {0, 1}VIxIKIxI*
to indicate whether a new instance ¢ of VNF k is de-
ployed on node n at time ¢. Let the binary matrix M(t) €
{0, 1}WIXIKIXI® indicate whether instance i of VNF k is
reused on node n at time ¢ or not, and I' € RWVIx K<
denotes the processing load already assigned to instance ¢
of VNF £ on node n.

Moreover, let R be the set of requests. A request
r € R is modeled as a directed graph G, = (K, L,),
where /C,. is the set of VNFs to be installed on MEC nodes
and L, is the set of virtual edges. A request r is char-
acterized by its delay threshold d,. and reliability require-
ment «,.. Each virtual edge [, € L, is characterized by
a tuple {d;r, by}, where d; , and b;, represent the de-
lay and bandwidth requirement, respectively. Finally, the
binary matrix Y(t) € {0, 1}/4/xI£-] indicates whether a
virtual link [, is mapped to a physical link [ at time ¢ or
not.

4. Problem Formulation

In this section, we first outline the constraints necessary
for our problem formulation, then provide detailed formu-
lations of the associated costs, and finally formulate the
objective function.

4.]. Constraints

Each instance ¢ of VNF £ cannot be deployed more than
once in the network. Furthermore, the number of de-
ployed instances for a given VNF k cannot exceed its
maximum number of allowed instances Ij,. Hence,

S Xuwi) <1, VkeK,iel,teT (1)
neN

and

SN Knki(t) + My i(t) < 17,
neN teT

(2
VkeK,ie{l1,2,...,I"}.

At any given time ¢, for a specific instance ¢ of VNF k
on node n, either a new instantiation or reuse should be
chosen, but not both simultaneously. In addition, reuse is
only possible if the instance has already been created, i.e.,

Xn,k,i(t)"’_Mn,k,i(t) <1, vk € ’Ca 1€ Ik’ n e N’ te T’ (3)
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and

ankz ’

t'<t

VeeK, i€l,, neN, t,t' €T,

nkz

“

where ¢’ represents a previous period. Constraint (4) can
be linearized by introducing an auxiliary binary variable
Z, ,i(t) = 1 when a VNF £’s instance ¢ was instantiated
at node n at t’ < ¢ such that

L k,i(t) > Xp i (') W <t,Yn e N,Vk e K,VielI", (5)
and

M, 1,i(t) < Zpgi(t) YREN,VEEK,Vie IFvte T. (6)

The processing load assigned to instance ¢ of VNF
k cannot exceed its available processing capacity, i.e.,

>

neN

nk:z +Mnkz(t)) Sck_rn,k,ia

(7
VeEel,iel,, teT.

Given the limited computing resources at node n, we must
ensure that its total resource usage is not exceeded at any
time as follows:

ZZ kit

keK i=1

)+M,, i (1) uP <cn VYneN,VEeT. (8)

Also, the total bandwidth usage on physical link [ should
not exceed b; at any time ¢, i.e.,

D 2 V)

reER €L,

bie<b VIELVLET, (9)

while the delay requirement of each virtual link must be

met,
Z Y,

leL

)-dy <d,, Vl.€L,. (10)
Similarly, the delay requirement d, for each request r
should be met. In other words, the total delay of the path

assigned to request r should not exceed d,., as follows:

> > Yu )

leLl.eL,

dy<d, VreRNVteT. (11)

Since VNFs can be virtually linked together to form a VNF
chain or an SFC, the latter should have at least a physical
link assigned between them, i.e.,

X ki(t) - X ) < ZYH

lel
Vn,n' e N ke K, . € Lryn #n'.

n’ k+1,J

(12)

Constraint (12) can be linearized by introducing an auxil-
iary binary variable W,, ,, . ;... (t) € {0, 1} such that

Wont kgt (8) < X g,i(2)
vn,n' € N,Vk € IC,Vl, € LVt €T,

13)

Won kegite (8) < Xt g1,5(0)
vn,n' € N,\Vk € K,Vl,. € LVt E T,

(14

Won kgt (8) > X i (8) + Xt gog1,5(8) — 1
Vn,n' € N,Vk € KC,Vl. € L.Vt €T,

(15)

and

W ) <> Yo, (t)

leL
vn,n' € N,Vk € K,Vl, € L, VtE T.

(16)

nn ool (

Moreover, the reliability requirement c,. for each request
r € R should be met as follows:

[T 105

ke, i=1

gIRIRLEAC

leLl.eL,

TG +Mnkl()'0‘k)
17)
cap) > ap, Vre RVEET.

For simplicity, we transform Constraint (17) into a log-
arithmic form, enabling its support by MINLP solvers.
Specifically, —we define the auxiliary matrix
0(t) € RIWIXIKIXT® \where On.k.i(t) takes the value
log(a*) if either X,, 1. ;(t) or M,, 1 ;(t) is equal to 1. Sim-
ilarly, we define the auxiliary matrix ¢(t) = [¢1,] €
RIZIXI£+] for the link mappings. Consequently, we ob-
tain the following:

On ki (1) > Xngi(t) + My i (1)) - log(a®),  (18)
VneN,Vke K,VieIFVteT,
G, (1) > Y, (t) - log(ay), (19)
Vie LV, e L, NteT,
and
Ilc
DTN Onki®+ D D bra(t) = log(er), (20)
ke, i=1 leL €L,
Vr e RVt € T.

4.2. Costs and Objective Function

The cost associated with the resource usage of MEC nodes
is given by

cres = Z ZZ nkz
neN

kek i=1

() + My g,i(t) - uF - Cn. (2D
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Also, we derive the costs related to instantiation and reuse
of VNF instances as follows:

Ik
Cota () = D2 D0 D7 (Xnki®) - C* + My () - CHF). (22)

keK i=1neN

Moreover, we deduce the costs associated with the band-
width usage of physical links by

Cow®) =) > Yy, () by Cr. (23)
leLTERIEL,
Hence, the total cost is defined by
Ciot(t) = Cres(t) + Cpia(t) + Couw (2). (24)

I} inally, the ObjeCtive of our ()|)ti1nizati()n pr(bhlem is for-
mulated as f

X ' E C 0 t , 5

(t)J\r’P(?;l’y(t)7 t t( ) (Z )

Z(1),W(1),0(t),6(t) €T

where the objective function aims to reduce the total cost
of VNF deployment over the observation time 7. The
resulting problem (P1), formed by equations (1)—(3), (5)—
(11), (13)—(16), (18)—(20) and (25) is NP-hard. To prove
this, we leverage the NP-hardness reduction approach by
considering a simplified single-time slot problem where
VNFs are placed in nodes to minimize costs while guar-
anteeing end-user QoS requirements. We further focus on
the specific case of homogeneous nodes, which have the
same capacity, while VNFs may have varying resource re-
quirements. This particular problem can be easily under-
stood as the well-known Generalized Assignment Prob-
lem (GAP) [31]. In GAP, the objective is to obtain a
maximum overall profit assignment of tasks with differ-
ent amounts of resources to agents, such that each task is
assigned to precisely one agent, subject to the agents’ ca-
pacity. Also, each task has a different profit, depending on
the assigned agent. The defined problem can be viewed as
a GAP, where agents correspond to nodes, VNFs represent
tasks, and task profit is interpreted as cost savings. Since
GAP is known to be NP-hard [31], then, by restriction,
our simplified version of the problem is also NP-hard.

5. Proposed Solution

In this section, we propose a solution to the problem (P1),
which addresses the total cost of SFC placement in MEC
networks with redeployment schemes. We propose a
DTQN-based approach that learns a policy for placing and
routing network functions to ensure QoS requirements,
considering real-time network conditions and operational
objectives.

5.1. Background

Deep neural networks, particularly DQN, form the com-
putational backbone of RL-based approaches, enabling ro-
bust performance across various domains [32]. Within the
context of NFV, DQN significantly enhances the decision-
making process for optimal placement strategies. It pro-
vides adaptive learning capabilities that effectively man-
age dynamic network environments and the complex, high-
dimensional state space, which includes parameters like
network topology, resource availability, and traffic de-
mands.

Several advancements have refined the performance
of DQNs. For instance, Double DQN [33] addressed the
overestimation bias of Q-values inherent in standard DQN
by decoupling action selection from Q-value evaluation,
resulting in more stable and accurate learning. Similarly,
Dueling DQN [34] separated the representation of the
state value function and the advantage function, allowing
the network to estimate better the value of specific actions
in given states. However, a key challenge for most deep
RL approaches is the assumption of a fully observable en-
vironment, which is often not applicable in practice. In
many areas, including VNF placement, the environment
is partially observable, meaning that the agent lacks com-
plete state information at each time step. Also, temporal
dependencies significantly influence network state and re-
source demands, leading to suboptimal decisions if not
properly addressed.

To mitigate this issue, architectural or training sup-
port is essential [32,35-37]. Recent approaches incorpo-
rated Recurrent Neural Networks (RNNs) into the DQN
framework to maintain a memory of past observations and
actions, thus capturing critical temporal dependencies for
effective VNF placement. However, RNNs can be fragile
and difficult to train, often necessitating complex “warm-
up” strategies to initialize hidden states at the start of each
training batch [32,38].

In contrast, the Transformer model has demonstrated
superior handling of temporal dependencies compared to
RNNs and is increasingly prevalent [39]. Transformers
are designed to handle sequential data by processing entire
sequences at once rather than iteratively, as in traditional
RNNSs. This allows transformers to capture complex state
representations and address partially observable domains.
The key innovation in transformers is the self-attention
mechanism, which allows the model to weigh the impor-
tance of different parts of the input sequence dynamically,
enabling the model to focus on the most important parts
[40]. Each element in the input sequence is transformed
into three vectors: Query (Q), Key (K), and Value (V).
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These vectors are learned representations to compute at-
tention scores. The attention score for a pair of elements
is calculated as follows:

. QKT”
Attention(Q, K, V) = softmax(
Vo
where Q, K, and V are the query, key, and value matrices,
respectively, dj, is the dimension of the keys, and (-)7 is
the matrix transpose operator. The value vectors in ma-
trix V are weighted using the weights resulting from the
softmax operation. The softmax function ensures that the
attention scores are normalized to sum up to one. The at-
tention scores are then used to compute a weighted sum
of the value vectors, representing the attention output and
emphasizing the most relevant parts of the input sequence.
In DTQNs, the transformer network processes se-
quences of past states and actions to produce a rich rep-
resentation of the current state. This state representa-
tion serves as an approximation of the Q-value function
Q(s,a;0), where 6 denotes the network parameters. The
Q-value function Q(s, a) represents the expected cumula-
tive reward for taking action a in state s and is updated
iteratively using the Bellman equation as

) vV, (20

Q(st,at) < Q(s¢,a¢) +
(27)
Oé(rt +ymax Q(st+1,at+1) — Q(st, at)>,

where « is the learning rate, r; is the reward received at
time ¢, v is the discount factor, s;11 is the subsequent
state, and max,c 4 Q(S¢, az) is the maximum Q-value for
the next state over all possible actions. The network pa-
rameters are optimized by minimizing a loss function that
measures the difference between predicted Q-values and
target Q-values, written as

L(9) = ]E(St,atart75t+l)ND

Tt + v max Q S at; 0
( t Y ( t4+1, at, )

- Q(Smat;@))z}v

where E is the expectation operator, the experience replay

buffer D stores past experiences (s;, at, T't, St+1), and the
target network parameters 6~ are periodically updated to
stabilize training.

5.2. Proposed DTQN-Based VNF
Placement Solution

This subsection presents the proposed DTQN-based VNF
placement solution for incoming requests. To this end, we
reformulate problem (P1) as an MDP. Specifically, we de-
fine the states, actions, and rewards as follows:

5.2.1. State

A state s; must represent the current configuration of
the network, encompassing aspects such as node capac-
ities, resource availability, and the deployment of VNF
instances. Consequently, we include the node states such
as the available computing resources:

I*
C?l"aﬂ(t) =cp— Z Z(X'rb,k,i(t) —|—Mn,k,i(t)) - (29)

ke i=1

We also consider the link states, such as the available band-
width on each link

b?vail(t) — bl _ Z Z Yl,lT (t) . bl,'r‘.

reRl,.-€L,

(30)

Moreover, we consider node resource costs C,,, node re-
liability «,,, link delay d;, bandwidth cost C;, and link
reliability «;. Furthermore, we take into account the re-
quest states, such as the delay threshold d, and reliabil-
ity requirement «,., and the virtual-to-physical mapping
Y, (t). Finally, we include the VNF reliability param-
eter o, the instantiation and reuse costs C¥ and Ci*,
the instantiation and reuse status matrices X,,k,(t) and
M,, 1 ;(t), and the current processing load assigned to
each VNF instance on each MEC node T',, 1, ; (¢). Hence,
the state s; can be defined by

s = (1), Cos s P (1), i, Coy X i (1),
_ 31
My, ki (), T e, (8), C, C¥ 0 diey o, Yo, (t)) :

5.2.2. Actions
We define an action a; through the following quadruple:

ar = (X ki (£); M i (8), T i (1), Yo, (). (32)
Specifically, the DTQN agent must decide whether to in-
stantiate a new VNF instance or reuse an existing instance,
how many resources to allocate and the virtual-to-physical
link mapping.

5.2.3. Reward

We implement a reward mechanism that grants positive

reinforcement when the agent reduces costs compared to

the previous time slot. Hence, we define this reward as
Ryee = max(Ceor(t — 1) — Crot(t), 0). (33)

Also, we penalize the agent if there are QoS violations,
i.e., we define a delay violation penalty such that

Pielay(t) = D max (072 S Y t) - d —dr>. (34)

reR leLlreL,

Computing&Al Connect

Ndiaye et al.


https://scifiniti.com/
https://scifiniti.com/journals/computingai-connect

2025, Vol. 2, Article ID. 2025.0012
https://doi.org/10.69709/CAIC.2025.181989

14;)SCW”WTI

Algorithm 1 Proposed DTQN-based solution

Require: Initial state s, learning rate «, discount factor
Y

Ensure: Optimized Q)-function

1: Initialize Q)-function with random weights
2: fort =1toT do

3; s} = TransformerStateProcessing(st) (Algo. 2)

4: Choose action a; using e-greedy strategy

5 Execute a; and observe reward r; and new state
St+1

6: sy, = TransformerStateProcessing(s;41) (Algo.
2)

7: Compute  target = re  +

YmaXa, Q(52+1a ag41)
Update Q-function:
: Q(s},ar) < Q(s},ar) + alye — Q(s}, ar))
10: St < St+1
11: end for

Algorithm 2 State processing with Transformer

Require: State s;
Ensure: Compressed representation s;
1: function TRANSFORMERSTATEPROCESSING(s)

2 e = EmbeddingLayer(s)

3 a = MultiHeadAttention(e)
4: s; = FeedForward(a)

5 return s;

6: end function

A reliability penalty is also defined as follows:

Prei(t) = Z max (07 Qr

reER

Ik
= T TIXnki(®) - a® + My, g i(t) - o) (35)

keK, i=1

H H (Yl,lr(t)'al))'

LI €L,

Finally, the reward function r(¢) can now be defined as
T(t) — Rdec(t) - (Ctot (t) + Pdelay (t) + Prel (t)) (36)

Based on the above, we developed our DTQN-based
VNF placement solution as summarized in Algorithm 1.
Specifically, in Algorithm 1, we start by initializing the Q-
function with random weights. At every step, the current
network state is transformed into a compressed represen-
tation through the TransformerStateProcessing function
(Lines 3 and 6 in Algorithm 1), as detailed in Algorithm
2. This function extracts relevant features to facilitate pol-
icy learning. It begins by processing the network state
s¢ through the embedding layer of the Transformer, con-

verting s; into a dense representation. The multi-head at-
tention mechanism of the Transformer then captures com-
plex relationships among different network entities, con-
sidering both spatial and temporal interactions. This repre-
sentation is subsequently passed through the feed-forward
neural network of the Transformer, resulting in the final
condensed representation s;.

After executing the TransformerStateProcessing
function, the remaining DTQN execution is similar to that
of DQN, where the RL agent learns the Q-values by min-
imizing the loss function based on the Bellman equation.
An action is selected based on the exploration strategy,
such as the e-greedy method (Line 4 in Algorithm 1). The
RL agent then observes the received reward and the new
state, which is also transformed into a compressed repre-
sentation (Lines 5-6 in Algorithm 1). A target is calcu-
lated, comprising the observed reward and the estimated
best future action, discounted by the factor « (Line 7 in
Algorithm 1). The Q-function is updated based on this
target using a learning rate o (Lines 89 in Algorithm
1). This procedure is repeated for a specified number of
steps to optimize the Q-function, ensuring a more accurate
estimation of expected future rewards.

5.3. Complexity Analysis

The time complexity of the proposed DTQN algorithm
arises from both the RL training loop and the Transformer-
based neural network component used for Q-value ap-
proximation. In DTQN, the Transformer encoder, which
processes state representations, determines the per-step
computational complexity. Specifically, the self-attention
mechanism within the Transformer dominates the com-
plexity due to pairwise comparisons among input sequence
elements, resulting in a quadratic dependency on the se-
quence length H. Combined with the embedding di-
mension v, the per-step complexity of the forward pass
through the Transformer encoder is O(H? - v) [41]. Addi-
tional operations, such as feed-forward layers and normal-
ization, contribute linearly or quasi-linearly to this com-
plexity.

In the overall RL training loop, each step involves
sampling a mini-batch of size G from the replay buffer,
executing forward passes through the Transformer-based
model for both the current and next states, and perform-
ing a backward pass to update the network parameters.
The forward and backward passes share a similar compu-
tational cost, making the per-step training complexity ap-
proximately O(G-H?-v). Over Ty,qin total training steps,
the overall complexity is O(Tyqqin - G - H? - v).

Hence, the computational intensity of the DTQN
arises primarily from the sequence modeling capabilities
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of the Transformer encoder. While this architecture en-
tails higher computational costs than traditional methods,
its ability to effectively capture complex temporal and
spatial dependencies greatly enhances the accuracy and
efficiency of decision-making in VNF placement and re-
deployment.

6. Experimental Results and
Discussion

This section presents the simulations conducted to eval-
uate the performance of our proposed solution against
existing baselines. We first describe the simulation envi-
ronment, followed by an analysis of the obtained
results.

6.1. Simulation Setup

We conduct our simulations on Google Colab using the
Tesla T4 GPU, which features a Turing architecture with
2560 CUDA cores and 320 Tensor cores. This GPU pro-
vides up to 8.1 Floating Point Operations Per Second
(TFLOPS) of single precision floating point performance,
combined with 16 GB of GDDR6 memory and a band-
width of up to 320 GB/s.

The simulation parameters, including network con-
figurations, request characteristics, and hyperparameter
values, were selected based on representative benchmarks
and practices in MEC and NFV research, as well as rein-
forcement learning standards, such as [42—44], to ensure
realistic and challenging test conditions.

Our substrate network comprises users uniformly
distributed across the network and [5—10] MEC nodes,
with each MEC server featuring one to five outgoing links,
randomly assigned to other MEC nodes to reflect network
topology variability and dynamism. Each MEC node is
configured as a multi-core system with a maximum com-
puting resource capacity ranging from 5 to 10 GHz across
all cores, a unit resource cost of 10, and a reliability pa-
rameter ranging from 99.9% to 99.999%. Note that in our
simulations, we intentionally limit the number of MECs
and deliberately set the resource capacity of nodes to pro-
voke migration scenarios.

Each physical communication link is assigned a
bandwidth capacity ranging from 100 to 200 Mbps, with
a bandwidth cost of 0.05 per Mb and a reliability rate be-
tween 95% and 99.9%. The required processing capacity
for the VNFs ranges from 1 to 4 GHz, and the resource
storage capacity for each VNF ranges from 50 to 200 MB.
The VNF reliability requirement is set between 99.9% and
99.999%, reflecting the stringent requirements of URLLC
applications. The instantiation cost for a Virtual Network

Function (VNF) is fixed at 10, while the reuse cost is set
at 5.

In our experiments, we consider incoming service
requests from end-users that require the deployment of a
VNF-based Service Function Chain (SFC) in the Multi-
access Edge Computing (MEC) network. These service
requests are categorized into four types, depending on the
number of VNFs within the service chain, ranging from
1 to 4 VNFs. Service requests are generated following a
Poisson distribution with an arrival rate parameter § that
varies within the set {30, 50, 80, 100}. Each request has a
delay threshold between 1 and 10 milliseconds (ms), and
the reliability requirement is randomly selected from the
range [99%, 99.9%].

The proposed solution, referred to as DTQN, is eval-
uated against three baseline algorithms: a DQN-based
method (DQN), a heuristic approach relying on random
placement (Heuristic), and a D3T-based method [30],
which has been modified to incorporate redeployment
strategies to ensure fairness. The DTQN architecture has
an input layer sized to the state vector and an embedding
layer with a size of 128. Itis followed by a Transformer en-
coder layer, which includes a multi-head attention mecha-
nism with two heads, each having a size of 64. The feed-
forward network within each transformer encoder layer
consists of two fully connected layers, each containing
128 ReLU-activated neurons. Layer normalization and
dropout (with a rate of 0.1) are applied after each sub-layer
in the transformer encoder. The final output layer is a fully
connected layer that generates Q-values with a size corre-
sponding to the number of potential actions. The D3T ar-
chitecture builds on the Transformer-based approach, sim-
ilar to DTQN, but differs in its decision-making process.
It includes a single transformer encoder layer with two
multi-head attention heads and a feed-forward network of
128 neurons per layer, ultimately outputting Q-values for
action selection. The DQN architecture is configured with
an input layer sized to the state vector and includes three
fully connected layers, each with 128 ReLU neurons. The
final output layer is a fully connected layer that produces
Q-values, sized to the number of actions. The used hyper-
parameters for the DTQN, D3T and DQN are summarized
in the Table 1. To incentivize reuse over migration, we as-
sign a reward factor of 7 for reuse and 4 for migration.
Conversely, failing to fulfill a request due to a violation
of QoS requirements incurs a penalty with a reward factor
of —5.

6.2. Simulation Results and Discussion

We begin by examining the impact of increasing the num-
ber of nodes and the arrival rates § for each algorithm. The
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Table I: Selected hyperparameters for learning-based methods

Hyperparameter Value

Replay memory size 20000

Discount factor 0.99

Exploration rate 1.0, decaying to 0.01
Exploration rate decay 0.995

Learning rate 0.0005

Batch size 256

Number of episodes 1000

Frequency of target update 500

—— DTQN
—— DON
— D3T
—— Heuristic

200

150

100

Average rewards

50

0 100 200 300 400

Episode

Figure |: Average rewards per episode (N = 5).

average rewards per episode for each algorithm are pre-
sented in Figure 1, which considers 5 nodes with 6 =
30, while in Figure 2, we consider 10 nodes with § =
100. It is important to note that in each episode, network
link mappings among nodes vary to capture the variabil-
ity and dynamism of the network topology. Furthermore,
strict adherence to QoS requirements is enforced for all
requests, and partial satisfaction is not accepted. Conse-
quently, only fully accepted requests are included in the
results presented in Figures 1 and 2.

For any ¢ (Figures 1 and 2), the proposed DTQN so-
Iution consistently achieves the highest rewards, despite
its greater computational demands and longer training
times, compared to baseline algorithms such as DQN and
Heuristic. While DTQN and D3T exhibit similar reward
performance at a smaller scale, DTQN surpasses D3T as
the number of users increases. In contrast, the Heuris-
tic approach consistently yields the lowest rewards. This
trend is further supported by Figure 3, which presents
the average rejection rates over five simulation runs with
0 = 50. The results indicate that DTQN achieves the low-
est rejection rate, followed by D3T and DQN, while the
Heuristic approach has the highest rejection rate.

— DTON
— DON
1 — D31
—— Heuristic

Average reward

300
Episode

Figure 2: Average rewards per episode (N = 10).

® DTQN 4 D3T = DQN @ Heuristic

Rejection rates

0.0

7 8 10

Number of nodes

Figure 3: Rejection rates vs number of nodes (6 = 50).

Notably, the performance gap between DTQN, D3T,
and DQN in Figures 1 and 2 widen as the number of nodes
in the topology and § increase. This is likely due to the
enhanced ability of DTQN to capture temporal dependen-
cies, eventually leading to more accurate SFC placement
decisions that prioritize reuse over migration. As the re-
quest arrival rate § increases and network resources be-
come saturated, optimizing VNF placement and reuse de-
cisions becomes crucial to avoid network overloading.

This observation is further validated by Figure 4
(N = 10, 6 = 30) and Figure 5 (N = 10, § = 100),
which illustrate the SFC embedding strategies adopted by
each evaluated approach. The Heuristic method, which
achieves the lowest average rewards, exhibits a uniform
distribution across new VNF instantiation, migration, and
reuse placement decisions, regardless of the arrival rate
6. In contrast, the DQN baseline demonstrates a more
adaptive strategy, adjusting the balance between VNF
placement and reuse based on the value of §. Meanwhile,
DTQN and D3T-based solutions consistently prioritize
VNF instance reuse across all values of . As the number
of users increases, DTQN further distinguishes itself from
D3T by prioritizing VNF instance reuse even more.

This preference can be attributed to several factors.
First, the simulation parameters set the reuse cost lower
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Figure 4: Distribution of SFC embedding decisions (N = 10 and
4 = 30).
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Figure 5: Distribution of SFC embedding decisions (N = 10 and
¢ = 100).

than the migration cost, making VNF reuse more cost-
effective than instantiating new VNFs. Moreover, mi-
gration induces extra bandwidth consumption, potentially
jeopardizing QoS requirements and incurring penalties,
particularly at high §. By prioritizing VNF reuse, the
DTQN-based solution minimizes unnecessary resource
allocations and bandwidth usage, thereby maintaining a
more stable and efficient MEC network. Furthermore, the
enhanced ability of our solution to capture temporal de-
pendencies enables more informed placement decisions,
striking a strategic balance between immediate resource
utilization and long-term network performance.

Figure 6, which illustrates the average costs of each
algorithm as a function of the number of nodes over five
simulation runs, supports the previous statement (§ = 50).
Despite having the highest rejection rate compared to
DTQN, D3T and DQN, the Heuristic approach incurs
the highest costs due to its inadequate placement strategy
and excessive bandwidth consumption. At smaller scales,

B DTQN m D3T m DQN M Heuristic

80
60
2
173
8
o 40
o
g
2
20
0

7 10

Number of nodes
Figure 6: Average costs vs number of nodes (6 = 50).

DQN incurs slightly lower costs than DTQN. However, it
is imperative to note that DQN has a higher rejection rate,
resulting in fewer satisfied requests. Moreover, as the
number of nodes increases, DTQN’s costs decrease rela-
tive to DQN’s, since DQN’s suboptimal decisions have
a greater impact than the difference in the number of re-
quests served.

These findings suggest that Transformer-based RL
models, such as DTQN and D3T, hold significant promise
for complex decision-making tasks in dynamic networks,
particularly in optimizing VNF placement strategies. By
prioritizing VNF reuse over new instantiation and mi-
gration, DTQN achieves superior performance, cost effi-
ciency, and resource optimization, especially under vary-
ing network demands.

7. Conclusions

This paper presents a comprehensive solution for VNF
placement and utilization in MEC networks, specifically
tailored for mission-critical applications with stringent
QoS requirements. Our DTQN-based approach effec-
tively addressed the dynamic nature of MEC environ-
ments by leveraging advanced RL techniques to optimize
VNF placement strategies. Simulation results demon-
strated the superiority of the proposed method in achiev-
ing cost efficiency, minimizing service disruptions, and
ensuring better resource utilization compared to baseline
approaches. The emphasis on reusing VNFs rather than
creating new instances or migrating VNFs highlights the
crucial role of smart resource management in supporting
dynamic networks and minimizing operational expenses.
These findings suggest that Transformer-based RL mod-
els are promising for solving complex decision-making
tasks in dynamic and resource-constrained network envi-
ronments. In future work, we will investigate the scala-
bility challenge of the proposed DTQN-based solution in
large-scale network environments.
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Abbreviations

5G 5th Generation

APMEC  Automated Provisioning Framework
for MEC

DT Decision Transformer

DDQN Double Deep Q-Network

DQN Deep Q-Network

GAP Generalized Assignment Problem
IoT Internet-of-Things

IT Information Technology

MDP Markov Decision Process

MEC Multi-Access Edge Computing

MILP Mixed-Integer Linear Programming
MINLP  Mixed-Integer Non-Linear Programming
ML Machine Learning

NFV Network Function Virtualization

QoS Quality-of-Service

RNN Recurrent Neural Network

RL Reinforcement Learning

SAP Subchain-Aware NFV Service Placement
SFC Service Function Chain

SLA Service-Level Agreement

TFLOPS  Floating Point Operations Per Second
URLLC  Ultra-Reliable Low-Latency Communication
VM Virtual Machine

VNF Virtual Network Function
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