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Abstract

This paper presents a smart diagnostic framework for dental smile analysis. To accurately and efficiently identify esthetic issues
from a single image of a smile, a convolutional neural network (CNN) was trained. To overcome the limitations of scarce data, a
diffusion model was employed to generate dental smile images in addition to manually curated data. The CNN was trained and
evaluated on three datasets: all real images, all generated images, and a hybrid dataset comprising of equal proportions of real-to-
generated images. All three models demonstrate accuracy significantly above the baseline in detecting excessive gingival display,
unlocking a novel diagnostic method in smile analysis. Notably, the hybrid model achieved the highest accuracy of 81.61% (p - value
< 0.01), highlighting the effectiveness of generative data augmentation for machine learning. The proposed solution could be part
of a standalone home-deployed smart mirror or connected to a network of innovative Internet-of-Mirrors to facilitate patient-dentist

communication.
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I. Introduction

The rapid growth in the number of connected devices man-
ifested by the Internet-of-Things (IoT) and the expand-
ing capabilities of artificial intelligence (AI) has set the
stage for accelerated growth in digital beauty and health-
care [1,2]. However, a significant gap is evident in the
landscape of the dental sector, particularly in aesthetic
smile analysis. Closing this gap is imperative, given the
escalating demand for smile rectification [3]. The impor-
tance of aesthetic smile treatment for many patients arises
from the impact a person’s smile has on various interper-
sonal aspects, including attractiveness, self-confidence,
perceived success and intelligence, social acceptance, and
psychological well-being [3,4]. In some cases, an undesir-
able smile may lead to neglect in oral self-care, increasing
the prevalence of periodontal problems [5]. Orthodon-

tic treatment of smile aesthetic issues, sometimes in the
form of surgical intervention, results in an improvement
of many of these variables [6,7]. However, before a pa-
tient can undergo treatment, the specific elements of the
smile that require correction must be analyzed. At present,
the evaluation of esthetic appeal is confined to human eye
assessment of smile elements, which have been heavily
researched [8]. One such element, the lip line, pertains to
the extent of maxillary teeth displayed upon smiling [9].
An ideal lip line exposes a range of three-quarters to the
full clinical crown of maxillary teeth and only the inter-
dental gingiva. A low lip line exposes less than three-
quarters of the clinical crown height, while a high lip line
exposes more than the full clinical crown with a continu-
ous band of gingiva [10]. Figure 1 shows a high lip line
before and after treatment. Among aesthetic issues, gingi-
val display was selected as the focus of this study due to
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its widespread occurrence, significant influence on smile
attractiveness, and recognition as the most distracting ele-
ments by dental students [3,11,12].
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a) Before b) After
Figure I: Presence of excessive gingival display in (a) before

orthodontic treatment. An ideal lip line after treatment shown in
(b). The blue line shows the location of the lip line.

As clinical dentistry progresses towards being com-
puterized, digital documentation of photos has become a
standard procedure [8]. This shift is significant as paper-
based photographs can lead to a substantial overestimation
of a smile’s perceived attractiveness [13]. Additionally,
biases such as subjective esthetic appreciation and the spe-
ciality of the assessing dentist can affect the assessment
[8]. Different aspects of the smile are noticed by dentists
of different specialties [14]. This discrepancy in clinical
observations raises the question of whether general den-
tists or newly graduated clinicians without substantial ex-
perience might benefit from having ”another set of eyes”
when making complex clinical decisions.

Another drawback of the conventional methods is
the delay between patients initiating appointments and
receiving rectification, sometimes taking months before
redirection to a professional [15]. Long waiting times are
one of the major factors negatively affecting patient expe-
rience, patient-provider relationship, and the patient return
rates to the same provider [16]. While review appoint-
ments play a crucial role in tracking treatment progress,
a more efficient system connecting patients with health-
care providers could be developed to minimize prolonged
waiting times. Similar challenges arise in the broader
medical sector due to the workforce deficit in the UK
National Health Service, which has been struggling to
recover post the COVID-19 pandemic, resulting in the
worst-recorded waiting times for cancer care [17]. This
trend is reflected globally, with the shortage of healthcare
workers projected to be higher in future post-pandemic
calculations [18]. To counter this, there has been a dras-
tic shift towards remote consultation and digital health-
care [19,20]. However, digital smile analysis is lagging
behind other healthcare sectors. To the best of our knowl-
edge, there are no reliable, non-invasive, time-efficient
diagnostic tools or post-treatment trackers available for
smile esthetics evaluation.

The limitations of existing dental aesthetic diagno-
sis methods prompt consideration of novel solutions. For

instance, Al and machine learning (ML) are currently em-
ployed in numerous healthcare fields and have the po-
tential to improve accuracy, increase efficiency, and aid
in decision-making processes. This could revolutionize
daily practices and have positive societal and environmen-
tal impacts [21]. Moreover, wireless communication net-
works pave the way for enhanced connectivity, enabling a
multitude of applications that can revolutionize diagnostic
tools by ensuring efficiency and timely delivery of results
through the IoT [2].

Various areas have benefited from connected tech-
nology, where [oT systems serve as the backbone of smart
devices. Integrating the IoT into healthcare has the power
to improve the quality of life [22,23]. We hypothesize
that combining the IoT with ML and big data analysis can
non-invasively, or without the need for intrusive and sur-
gical procedures, resolve many limitations of traditional
healthcare, particularly within smile analysis. ML drives
the IoT in two main aspects: network communication and
application-specific analysis. Network problems, such as
routing, traffic, and resource control, have been success-
fully solved with ML models [24]. Additionally, ML can
be used to detect patterns in data received from the IoT sen-
sors for diagnosing patients. For example, ML has been
applied to analyze heart pulse, blood pressure, and temper-
ature sensor input to identify high blood pressure, elevated
heart rate, or even heart attacks [25]. The full integration
of ML into an IoT system equipped with a camera would
allow for an automatic non-invasive smile analysis tool.

I.l1. Related Work

Before ML can be safely integrated into diagnostic IoT
devices, robust model training and analysis must be con-
ducted to ensure accurate inference. Regarding dental
smile analysis, previous research efforts have focused on
automating the recognition of dental issues through ad-
vanced computer vision (CV) techniques and ML algo-
rithms. There is a multitude of existing ML techniques,
and it is imperative that the most suitable ones are applied
to particular problems. Recent years have seen a surge of a
subfield of ML called deep learning (DL). DL is empow-
ered by interconnected layers of neural networks (NN)
and has been adapted to many applications in the scope of
healthcare and CV [26]. There is a range of model archi-
tectures within DL for CV with their respective trade-offs
in performance, resources, and latency.

Previous studies that employed DL in dental anal-
ysis have adapted variable architectures with varying de-
grees of success. One notable study [27] chose a combi-
nation of detection and segmentation, employing an ar-
chitecture within DL called Mask Region-based Convo-
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lutional Neural Network (R-CNN). Mask R-CNN builds
upon Faster R-CNN by introducing an additional branch
dedicated to predicting masks at the pixel level, which are
calculated based on rigorous labeling shown in Figure 2,
for discerning and effectively segmenting relevant ob-
jects [28]. Due to the absence of publicly available datasets,
[27] the study collected and annotated only 100 images,
achieving a pixel accuracy of tooth segmentation between
90.1% and 97.4% for natural teeth and lower for dentures.
The observed high accuracy is consistent with the nature
of Mask R-CNN methods, which prioritize performance
over speed. An analysis of a single frame using Mask
R-CNN typically takes a few seconds, depending on the
data to be analyzed and the number of inferences to be
made [29]. This delay will add up with image preprocess-
ing and routing, and it will be multiplied by the number
of frames to be analyzed. For example, if three images
are taken for averaged results or different angles for other
applications, the delay can be 10-30 seconds. In pursuit
of scalable real-time results and a smooth user experience,
another study [30] employed an extension of You Only
Look Once (YOLO), the YOLACT++ instance segmen-
tation model, analyzing a dataset comprising 5500 im-
ages of faces distributed across diverse classes. While the
model exhibited high accuracy in detecting facial features
like the nose, eyebrows, and eyes, a significant decline
in precision was observed when segmenting the gingiva
and buccal corridor. This decrease in precision may be
attributed to a relatively lower number of annotated in-
stances per class for these specific regions in the training
dataset, highlighting the importance of a well-balanced
dataset in DL. Another study [31] employed routine clin-
ical practices to acquire 1250 X-ray images for their ob-
jective of tooth detection and identification with faster
R-CNN, citing the high cost of instance segmentation la-

beling as their rationale.
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Figure 2: A sample of images with labeled maxillary teeth re-
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quired to create an attribute-value pair JSON file of pixels to
labels for instance segmentation using an annotation tool called
VGG Image Annotator.

The common thread in all these studies is the use
of relatively small datasets, which often prevents unlock-
ing the full potential of NN and leads to poor generaliza-
tion [32]. While the growth of big data has undeniably
improved the capabilities of NN, particularly in the realm
of CV, notable data gaps persist. In our case, this is evi-

dent due to the absence of an adequate dataset capturing
dental smiles. Models trained on small datasets have a ten-
dency to result in overfitting or not being able to general-
ize on unseen testing data, performing with high accuracy
during training but low accuracy during testing. There is
a multitude of techniques under data augmentation that
compensate for the lack of data by artificially expanding
the dataset. Data augmentation in CV makes for better
DL models by making multiple copies of the same image
with diverse geometric transformations, color augmenta-
tions, kernel filters, random erasing, and the application
of generative artificial intelligence (GenAl) [33]. The lat-
ter, unlike the other listed methods, synthetically gener-
ates new data points by capturing and changing distinc-
tive objects within the image and generating new images
with additional noise to increase performance on unseen
images [34]. GenAl, in particular, is promising in CV,
especially with the advancements in text-to-image gener-
ation capabilities in recent years [33,35].

Numerous studies have been taking advantage of
generative adversarial networks (GANs), a subclass of
GenAl to generate plausible data and augment small or
imbalanced datasets. One study used 13 small medical
datasets to show that the optimal proportion of GAN aug-
mentation significantly enhances the performance of all
ML classifiers [36]. Similarly, another study built an emo-
tion classification model and used GAN augmentation to
increase samples of less common classes such as disgust,
which increased classification accuracy by 5%—10% [37].
The study [32] observed a similar trend, employing GAN
data augmentation to amplify an X-ray dataset and improv-
ing the CNN model for pneumonia and COVID-19 detec-
tion. Other generative techniques have been used to solve
similar problems in different areas. For instance, [38] used
autoencoders to successfully generate multivariate data
for fire scenarios, taking slope, vegetation, and other fac-
tors into account. This shows the wide range of problems
generative models could be leveraged in to aid classical
ML in analyzing complex data.

While there is notable progress in data augmentation
in the field of medical image analysis for tooth identifica-
tion and segmentation, the issue of data scarcity remains a
challenge for smile classification. This challenge is even
more pronounced given that a comprehensive dental smile
dataset is not yet available, limiting advancements in den-
tal smile analysis. To address this challenge and fill this re-
search gap, this study presents a novel and accurate frame-
work for dental smile analysis empowered by the combi-
nation of DL methods and GenAl-empowered data aug-
mentation. To the best of our knowledge, this is the first
study to explore the application of ML in dental smile anal-
ysis, which has the potential to be applied not only in dig-
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ital dental esthetic technology in clinics and hospitals but
also in standalone home devices for accurate and efficient
smile analysis.

1.2. Contribution and Vision

In this paper, we propose a novel diagnostic smile anal-
ysis tool for excessive gingiva detection, leveraging a
CNN model and GenAl data augmentation. We employ
a sequential topology architecture for its simplicity and
adaptability. As with previously outlined studies, a persis-
tent challenge in our research stems from the insufficient
number of data available to generalize to unseen content.
To resolve this issue, we curate a dataset of a total of
512 dental smile images from available open-source im-
ages and text-to-image Al-generated samples. The inclu-
sion of Al-generated data from Adobe Firefly’s diffusion
model [39] significantly enhances classification accuracy,
demonstrating the efficacy of our methods. The usage of
text-to-image generative models in data augmentation is
still an early practice, but we show that it has potential in
dentistry. It enables us to attain higher quality results, for
example, detecting excessive gingival display correctly on
previously unseen images with 81.607% accuracy, with-
out incurring the costs associated with annotating segmen-
tation data.

Furthermore, we integrated the trained CNN model
into a minimalistic user interface (UI) that guides the user
to the correct position and captures a single image. The
image is subsequently preprocessed according to specifi-
cations and passed through the pre-trained CNN model.
The image is then analyzed in the backend, and the Ul
displays the result of the smile analysis obtained from the
model in real-time, forming an end-to-end application.

This application could be stand alone or integrated
into an innovative IoT smart mirror technology, termed as
the Internet-of-Mirrors (IoM) [40]. This visionary ecosys-
tem of interconnected smart mirrors could be used to inte-
grate the smile analysis application, as well as other digital
health and beauty applications. Telehealth services, such
as teledentistry, are time and cost-effective ways of health-
related communication [41]. The motivation lies in con-
necting patients with healthcare professionals or products
in a timely manner, as depicted in Figure 3. In this sys-
tem, each mirror would be equipped with sensors, such as
a camera, to acquire user input. In the context of smile
analysis, the mirror would take the dental smile image,
crop it according to the specifications, and use pre-trained
CNN model to produce an output and inform the patient
of their smile condition. The results of potential dental is-
sues and personalized suggestions would be displayed on
the UIL. Smart mirrors placed in homes would serve users

by promptly delivering tailored products or healthcare rec-
ommendations to align with their individual needs, and
effectively facilitating connections between patients and
professionals. Furthermore, smart mirrors placed in clin-
ics could resolve the smile analysis subjectivity issue by
providing a consistent basis for diagnosis.

To summarize, the main contributions of the paper
are the following:

. Novel Diagnostic Smile Analysis Tool: We intro-
duce a CNN model trained on real and Al-generated
images of dental smiles to detect excessive gingival
display, providing a non-invasive digital diagnostic
tool.

. Dental Smile Dataset: A dataset of 512 dental
smile images with a mix of real and Al-generated
images from Adobe Firefly’s diffusion model, lead-
ing to a significant improvement of classification
accuracy and addressing the challenge of limited
data points for dental image analysis.

. Application Integration: Integration of the pro-
posed solution into an application, offering a smooth
human-computer interaction experience and instan-
taneously displaying the results of the diagnosis and
suggestions.

2. Materials and Methods

In this section, we outline the methodology employed for
our research, detailing the data collection process, pre-
processing steps, and the architecture of the NN used for
smile classification.

2.1. Dataset

To train CNN models to an acceptable degree, a large
dataset is required. There are many resources of fully cu-
rated and often readily preprocessed datasets of images for
various CV uses online. In the context of dental smiles,
the absence of a suitable dataset in open-source reposi-
tories posed a significant challenge. Consequently, the
ethical collection of a diverse array of dental images en-
compassing various ethnicities, genders, and degrees of
gingival display became a persistent endeavor.

In total, two sets 0f 256 (counting 512 combined) im-
ages were collected and evenly distributed into “gummy”
and “normal” classes. The first set was manually cu-
rated from publicly available images scrapped from online
frontal face images of people smiling. This set included
samples showing highly positive excessive gingival dis-
plays as well as more discrete displays. The second set
was obtained from text-to-image Al-generated images us-
ing Adobe Firefly’s diffusion model. The text prompts for
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Figure 3: Interaction possibilities between professional dentists and patients as proposed in [40]. The diagram depicts each patient
equipped with a smart mirror that delivers information to dentists over a wireless network. The patient can then be redirected to
a professional through booking an appointment. The professionals can also rely on smart mirrors for providing a basis in subjective
diagnosis. This vision of interconnected dentistry would unlock the potential of building smart cities through a similar system.

the “normal” class ranged from “frontal portrait of a per-
son smiling with teeth; this person does not have a gummy
smile or braces” to simply selecting relevant images in
“frontal portrait of a person smiling”. It is important to
note that smile analysis with braces was excluded from
the training dataset, as individuals undergoing treatment
do not typically undergo aesthetic interventions until treat-
ment is completed.

Generating excessive gingival display proved to be
more challenging. The text-to-image diffusion model ex-
cels in comprehending daily human speech, but its grasp
of medical terminology remains somewhat restricted from
our observations. Changing terms like “excessive gingi-
val display” to more commonly used phrases like “gummy
smile” resulted in images of people chewing gum for sev-
eral images. Providing special tags such as “three mil-
limeters between the teeth and the upper lip” worked bet-
ter, though not all candidates qualified. In the end, the
prompts varied throughout the data collection, ensuring
only relevant images were added. Despite requiring some
filtering, this approach still consumed less time and re-
sources compared to manually annotating teeth with tools
like LabelMe or VGG Annotator. This is due to the fact
that segmentation labels require 20—30 points to precisely
trace the pixels of the teeth to be applied to the image. On
the contrary, labeling classes only requires one identifying
label per image.

Both sets contributed 56 randomly chosen images
each to the testing folder, setting aside 112 of the original
512 images for testing. The remaining 400 images (200
from real, 200 Al-generated by the diffusion model) were
randomly split with 80% assigned to training and 20% to
validation. In total, three separate datasets were curated:
real images (256 images), Al-generated images (256 im-
ages), and combined images (512 images). Compared to
other CV classification datasets, the model trained on this
dataset was more susceptible to overfitting. Therefore, it
was vital that the dataset’s quality was superlative for the
model to classify unseen images accurately. This was en-
sured by balancing a diverse range of individual frontal
smile images evenly between the two classes and validat-
ing the correctness of the labels with a professional dentist.

2.2. Preprocessing

Proactive measures were taken in the preprocessing step to
mitigate the risk of overfitting. Initially, all images were
normalized and converted to grayscale using the OpenCV
library. Following this, a pre-trained facial landmark de-
tector from the Dlib library was employed to identify the
coordinates of the mouth in each image. Subsequently,
every image was cropped to a size of 28 by 28 pixels, cen-
tered around the mouth. This systematic preprocessing
step was consistently applied to both training, validation,
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and testing data, ensuring the overall quality and consis-
tency of the dataset. Due to the nature of this prepro-
cessing approach, images of users’ faces were not saved
but were funneled through the pipeline up to the cropping
stage. This approach mitigated many privacy and ethical
concerns related to data retention and destruction.

Before feeding these images into the model, mul-
tiple augmentation layers were applied to artificially ex-
pand the dataset. In addition to the generated images, each
training image underwent a horizontal flip, three random
zoom factors between —0.2 and 0.2, random contrast with
a factor between 0.25 and 0.75, and random brightness
with a factor between —0.5 and 0.5. This approach in-
creased the size of each dataset by a factor of seven (the
original image and six augmentation layers), resulting in
a total of 3584 images.

The entire process pipeline is illustrated in Figure 4.
which presents a flowchart from receiving raw images to
preprocessing and training, using an example Adobe Fire-
fly image.

2.3. Model Architecture

A CNN classifier model was built using Tensorflow and
Keras to classify previously unseen images into either
“gummy” or “normal” smile classes. A sequential model
architecture was chosen for its simplicity, offering a linear
topology that enables the customization of layer stacking
while maintaining one input tensor and one output tensor.
This choice was driven by the primary goal of minimizing
the risk of overtraining, as small datasets tend not to gen-
eralize well to unseen testing data. The overall architec-
ture of the model follows a standard layer sequence. The
pattern of a 2D convolution layer followed by a 2D max
pooling is used twice. The rectified linear unit (ReLU)
function, represented by R(z) = max(0, z), served as the
activation parameter. The ReLU activation function was
also used in the first of the three densely-connected NN
layers. The second dense layer used the softmax s(xi)
function, which takes a vector xi and out- puts the prob-
ability distribution of each class for N classes, denoted by:

e’
s(x;) S ;v: e .
The final dense layer converted the output into a
probability distribution across the classes. Each model,
distinguished by real, Al-generated, and combined datasets,
was trained using the Adam optimizer. Through hyperpa-
rameter tuning, the optimal number of epochs was deter-
mined to be 150, and the batch size was set to 32. All
other parameters remained constant throughout training
sessions.

Q)

2.4. Mirror User Interface

The envisaged IoM calls for the integration of an interac-
tive dashboard. The interface of the dashboard was origi-
nally designed in-house, as shown in Figure 5 by the CSI
group at JWSE at the University of Glasgow. This served
as a base for a prototype Ul to connect to the pre-trained
smile analysis model. A basic layout of applications with
corresponding functionalities was created using modular
programming, allowing for flexible addition of buttons
with corresponding function calls to accommodate the
evolving functionalities of the application. For instance,
ML models trained to detect and classify skin diseases
could be paired with the Skin Analysis button in the back-
end function call without altering the overall structure of
the code.

Upon pressing the Smile Analysis button, the system
initiates video capture from the Intel RealSense Depth
Camera D435, accompanied by real-time red bounding
box tracking of the user’s face on the screen. Simultane-
ously, pre-trained Haar cascades for face and smile de-
tection operate in the background. The bounding box
changes color to green when the user maintains a smile
for two seconds, at which point an image is captured.
A demo of the entire process can be viewed here https:
/lyoutu.be/yj FavXCL2I. The captured image then enters
the standardized preprocessing pipeline and undergoes
analysis within the classification model, yielding the re-
sulting class instantaneously on the screen.

3. Results

In the results section, we first present the statistics of the
best-performing model, which consists of real and Al-
generated data. We then compare these results to those of
the uniformly trained models. Lastly, we briefly explain
the results of the segmentation model.

3.1. Gingival Display CNN Model

The research yielded several key findings. First, we eval-
uated the performance of the CNN model for detection of
excessive gingival display. The model employing diffusion
model data augmentation in addition to geometric transfor-
mations achieved an average accuracy of 81.607% with a
standard deviation of 1.938. This statistic reflects the av-
erage accuracy across 10 trials, each involving training the
model over 150 epochs and evaluating its performance on
56 previously unseen images to ascertain the accuracy of la-
bel predictions. The standard deviation was then calculated
using the standard formula, where the sum of the squared
differences is divided by the number of data points denoted
by n:
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Figure 4: Diagram of the pipeline from data collection to preprocessing to CNN training. On the right is a visualization of the process
a single image goes through. The image used is a random sample image from the Adobe Firefly Al-generated dataset with some of

the included data augmentations.
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Figure 6 illustrates the fluctuation in accuracy per-
centage throughout the progression of epochs for a rep-
resentative model, showing an upward logarithmic trajec-
tory of training accuracy. The validation accuracy starts
around 0.50 and closely mirrors the training accuracy
trend, though slightly lower. The training and validation
loss of the same session follows the opposite trend, as de-
picted in Figure 6. Training beyond 150 epochs proved

ineffective, as validation accuracy and loss diverged from
training resulting in a plateauing training accuracy and
decreasing validation accuracy.

The GenAl-empowered CNN model was compared
to the two byproduct models, one trained on 200 real
images and the other on 200 Al-generated images. For
consistency, each model’s testing accuracy was averaged
over 10 trials. The box plots of each model are shown
in Figure 7. As indicated by the error bars on the graph
and the p value greater than 0.1, there was no significant
difference between the performance of the model trained
on real human images and the model trained solely on
generative images. However, the median accuracy of the
model trained on both real and generated data was signifi-
cantly higher than that of the models trained on either real
or GenAl images alone (p value < 0.01) and higher than
the baseline of 50% (p value << 0.01).

Additionally, the confusion matrix of a representa-
tive model with an accuracy of 82.14% and an F1 score
of 0.82 highlights the importance of a balanced dataset in
achieving roughly even results in both ’gummy’ and ’nor-
mal’ classes. Figure 8 shows the squares on the right di-
agonal represent mismatches between true labels and pre-
dicted labels, indicating false positives and false negatives.
These mismatches are generally outnumbered by the true
positives in the first row and column and true negatives in
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Figure 6: A representative sample of training and validation accuracy and loss graphs of the CNN model throughout training.

the second row and column, representing a high numbers
of correctly labeled testing data points.

Model Performance Trained on Real, Al-Generated, and Combined Datasets
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Figure 7: Box plots of the testing accuracy of models trained on
real, Al-generated, and combined datasets.

4. Discussion

The research represents a significant step forward in apply-
ing DL to dental smile analysis. It underscores the poten-
tial for utilizing CV and ML techniques in real-time health-
care applications. The mean testing accuracy of 81.607%
indicates strong model performance, considering the base-
line value is 50%. While the small dataset presents limi-
tations, it also offers a notable advantage: computational
efficiency. Training models on a small dataset and a large
batch size is computationally inexpensive, allowing for

Confusion Matrix for Gingival Display Classification
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Figure 8: The confusion matrix of the CNN model results.

the averaging of results from multiple trials—10 in this
case—for each model.

We opted to evaluate each model using a combined
dataset comprising both real and Al-generated images,
rather than relying solely on real images. This decision
stems from the recognition that both types of images may
harbor biases, albeit potentially in divergent directions.
The manually curated ’real’ dataset exhibits significant
variation in image quality but may lack proportional ethnic
representation, potentially resulting in the model’s under-
performance for minority groups. Conversely, the diffu-
sion model was trained on a diverse dataset, thus yielding
diverse outcomes, but it may lack certain nuanced human
characteristics, the absence of which could disrupt the
model’s accuracy. Lacking a precise quantitative method
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to gauge these biases, it would be imprudent to assume
that either dataset thoroughly captures reality. While an
ideal testing dataset would mirror reality in terms of cam-
era quality, lighting, and angle, our current approach in-
volves making estimations based on the combined dataset,
relying on data augmentation to compensate for potential
inconsistencies.

The integration of pre-trained CV and Dlib models
for user image capture and analysis proved effective in
guiding the user towards capturing a smile. However, cap-
turing the ideal dental smile poses a significant challenge,
and any form of smile analysis, whether digital or tradi-
tional, will inherently lack precision without the acquisi-
tion of a proper dental smile. Consequently, we must rely
on a combination of on-screen instructions and guidance
from the CNN to ensure accurate identification and analy-
sis of smiles for our purposes.

Additionally, it is noteworthy that the model demon-
strated nearly instantaneous classification of a smile when
executed locally with a checkpoint. The only bottleneck
identified pertained to the duration required to initialize
the camera for the initial smile capture. Mitigating this
bottleneck could be achieved through the utilization of
more suitable tools for interfacing with device cameras;
however, such optimizations fall beyond the scope of
this study. It is important to acknowledge that this ef-
ficient performance may not necessarily translate seam-
lessly when deploying over a network. Therefore, the
selection of an appropriate model for network-based oper-
ation necessitates careful consideration of varying perfor-
mance characteristics, particularly with regard to latency.
Given the diverse array of available models, it is impera-
tive to prioritize the identification of a model that achieves
optimal balance between speed and quality.

5. Conclusion and Future Work

The purpose of this study was to prove a concept and serve
as a pilot study in detecting smile aesthetic issues with NN.
We accomplished this goal by demonstrating an accuracy
of 81.607% in detecting excessive gingival display using
a GenAl-empowered CNN model. As the potential of DL
and GenAl continue to expand, their applications grow
exponentially. However, several areas warrant further in-
vestigation and a cautious approach is necessary. We re-
iterate the importance of testing these models on images
representative of patients to be analyzed in a functional
application. The optimal proportion of Al-generated train-
ing images for a realistic testing set may not be a 1:1 ra-
tio. Exploring the impact of varying proportions of real
and Al-generated training images on CNN model perfor-
mance could yield valuable insights. To eliminate biases,

employing multiple GenAl frameworks to augment the
dataset would be beneficial. Furthermore, having reliable
testing data would provide an opportunity to experiment
with other model architectures, such as Tensorflow’s Func-
tional API model or a version of YOLO.

Alternatively, an outside-the-box approach could be
developed: rather than investing resources in adapting a
model to a dataset, the dataset could be adapted to the
model. In other words, a diffusion model could be built
to generate a dataset in the style of realistic images and
then train an NN purely on generated images. This innova-
tive method bypasses the need for perfecting the model ar-
chitecture through meticulous hyperparameter tuning. In-
stead, it prioritizes improving the start of the pipeline, for-
tifying the model against overfitting. Success in this en-
deavor could mark a significant leap forward, not only in
digital smile analysis but also in broader medical fields. It
would revolutionize the diagnosis of rare or infrequently
photographed diseases, launching a new era of precision
and effectiveness in medical diagnostics.

Regardless of the approach taken, the ultimate goal
within the scope of digital smile analysis remains stead-
fast: to develop an assistive diagnostic tool capable of
tracking changes over time, enabling healthcare profes-
sionals to deliver more accurate and timely treatment.
This concept holds promise for further development into a
fully functional application compatible with multiple op-
erating systems or integration within a novel ecosystem
of smart mirrors interconnected through the IoM. The ap-
plication can be extended to assess other smile analysis
components, such as the smile arc, to provide patient with
a more in-depth overview from the same image. Such
advancements could facilitate the interaction between pa-
tients and healthcare professionals providing reliable, ac-
curate, and automated smile analysis to be utilized by clin-
icians. Embracing smarter medical guidance and living is
a catalyst for fostering deeper engagement and collabo-
ration between patients and professionals in the digital
landscape. The realization of this vision is rapidly ap-
proaching, as the expanding capabilities of DL, generative
Al, and networks continue to unfold exponential applica-
tions. The goal is to refine this technology to be a standard
procedure in the process of digital smile analysis.
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CNN Convolutional Neural Network
DL Deep Learning
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