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Abstract

Lossy compression has become an essential technique to reduce data size in many domains. This type of compression is especially
valuable for large-scale scientific data, whose size ranges up to several petabytes. Although Autoencoder-based models have been
successfully leveraged to compress images and videos, such neural networks have not widely gained attention in the scientific data
domain. Our work presents a neural network that not only significantly compresses large-scale scientific data, but also maintains
high reconstruction quality. The proposed model is tested with scientific benchmark data available publicly and applied to a large-
scale high-resolution climate modeling data set. Our model achieves a compression ratio of 140 on several benchmark data sets
without compromising the reconstruction quality. 2D simulation data from the High-Resolution Community Earth System Model
(CESM) Version 1.3 over 500 years are also being compressed with a compression ratio of 200 while the reconstruction error is
negligible for scientific analysis.
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l. Introduction Meanwhile, lossy compression removes imperceptible de-
tails to achieve a much higher compression ratio. De-

Over the past few decades, the amount of information  gpjte the loss of information, the quality of the data re-
available for analysis has increased significantly. Scien- ¢onstructed by lossy compression schemes is generally
tific instruments and related computation systems, suchas  a¢ceptable and usable [7]. The nature of lossy compres-
the Linac Coherent Light Source [1], the Very Large Array  gion has led scientists and engineers to implement many
Radio Telescope [2], and high-resolution climate model- compression algorithms and methods to substantially re-
ing [3], have produced massive amounts of data, puttinga  dyce the size of scientific data [8,9], whose size is often
huge burden on the existing storage system. Therefore, it  enormous (up to 32 exabytes [10]). Furthermore, recent
is important to design efficient compression models that g dies by [11,12], and [13] showed that lossy compres-
are able to reduce the data size for storage while maintain-  gjon reconstruction data can be used for post hoc analyses.
ing the key information for analysis. In recent years, significant attention from scientific
Data compression can be lossless and lossy. Loss-  and engineering communities has been directed towards

less compression, whose reconstruction is exactly the  the advancement of neural network models across various
same as the original data, suffers from a low compres- domains such as computer vision [14], natural language
sion ratio (around 2:1 [4]) in floating point data sets [5,6].  processing [15,16], and compression [17]. Among nu-

* Corresponding Author: o o © 2024 Copyright by the Authors.
Hieu Le, Electrical and Computer Engineering, Texas A&M University, B Licensed as an open access article using a CC BY 4.0 license.

College Station, Texas, USA, hieult@tamu.edu

1


https://scifiniti.com/journals/computingai-connect
https://scifiniti.com/
https://creativecommons.org/licenses/by/4.0/
mailto:hieult@tamu.edu
mailto:jtao@tamu.edu
https://orcid.org/0000-0003-4228-6089
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

2024, Vol. 1, Article ID. 2024.0001
https://www.doi.org/10.69709/CAIC.2024.193132

(3)) SCIFINITI

merous types of deep learning architectures, Autoencoder
(AE) has gained tremendous attention because of its capa-
bility to learn data representation. AE demonstrates profi-
ciency in unsupervised learning of data representations for
reconstruction purposes. Internally, the network contains
a bottleneck layer, whose representation is much smaller
than its inputs in terms of size. Consequently, AE finds
primary application in dimensionality reduction and fea-
ture extraction tasks. Numerous AE adaptations have sur-
faced to enhance the fidelity of reconstructed data [18,19].
While AE has exhibited success in lossy compression of
images and videos [20], its utilization in scientific data
compression remains relatively under-explored. Despite
the limited literature on scientific data compression, AE-
based compression methodologies have demonstrated no-
table compression ratios, surpassing many traditional non-
machine learning-based techniques [21].

Inspired by the studies by [21] and [22], our objec-
tive is to develop a machine learning approach to substan-
tially reduce the storage footprint of scientific data, known
for its substantial space requirements. Thus, we investi-
gate the potential of employing a lossy AE for this task.
Our objective is to attain high data reconstruction quality
at an ultra-low bit rate, specifically aiming for values be-
low 0.40. We present an AE-based model engineered to
significantly reduce the size of the data while preserving
the fidelity of the data. The primary contributions of this
study are outlined below.

. Targeting a very low bit rate region, we implement
our own architecture to significantly compress our
simulation data from high-resolution HR-CESM1.3
data sets. Benchmark results are also presented to
ensure the performance of our model.

. We incorporate masking layers and several prepro-
cessing techniques to significantly improve the com-
pression performance of our model.

The remainder of this paper is organized as follows. In
Section 2, related work is discussed. In Section 3, we de-
scribe important concepts and techniques that are imple-
mented in our proposed models. Section 4 provides avail-
able resources for this study. Section 5 describes com-
pression experiments on the benchmark data and our large-
scale simulation data. We evaluate and analyze our results
in Section 6. Section 7 concludes our findings with direc-
tions for future work.

2. Related Work

Traditional lossy compression for scientific data could be
categorized into two types: prediction-based and transform-
based. Transform compression (e.g. ZFP [23]) trans-

formed the data before applying other techniques, e.g.
embedded coding, to truncate the transformed data. Co-
efficients and bit-plans determined by the model were
used to decompress the data. Increasing the number of
coefficients and bit-planes improved the quality of recon-
structed data but decreased the compression ratio.

On the other hand, prediction-based models, such
as SZ [8,9], and FPZIP [24], predicted the target data us-
ing previously reconstructed data points [8,9]. Similar to
transform-based models, the authors of [25] found that the
fidelity of the reconstructed data degraded when a high
compression ratio was required. Prediction-based models
have been shown to have high reconstruction quality at a
high compression ratio, which has led to more studies to
improve the performance of this type of compression.

Recently, deep learning models have been leveraged
to compress many types of data. Many AE-based models
showed remarkable results in image and volumetric com-
pression tasks.

Balle et al. [26] introduced an effective end-to-
end AE-based model to compress images. The authors
trained their models to optimize the performance of rate-
distortion. To balance the trade-off between the quality of
reconstructed data and compression ratio, both the losses
for reconstruction and compression rate were minimized
simultaneously. Since the quantization layer of their com-
pression models prevented the gradients from flowing
through the networks, independently and identically dis-
tributed uniform noise was used to replace the quanti-
zation layer during training. The added noise allowed
backpropagation without significantly deteriorating the
performance of the quantization layer when compressing
images.

Models with two levels of quantization were also
investigated in [27]. The second layer not only provided
fine-grained quantization but also acted as a prior for the
first quantization layer. In addition, arithmetic encod-
ing [28,29] was implemented instead of variants of Huff-
man encoding [30]. Integer quantization, proposed by
the authors of [31], was applied for quantization layers to
eliminate the dependence on hardware-platform floating-
point implementation, which varied from machine to ma-
chine, during compression.

Using the idea of two-level quantization, several
studies have been conducted to improve the capabilities
of neural networks to compress images. Minnen et al.
[32] built an autoregressive model. The first quantization
layer, which received input from the prior given by the sec-
ond quantization and from the encoder, autoregressively
processed data representation to produce high-quality im-
ages. Their neural networks were also among the first
machine-learning models that outperformed the state-of-
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the-art BPG compression [33]. However, autoregression
by its nature prevented neural networks from computing
in parallel. The models created by [20] eliminated the
autoregressive layer and replaced it with multiple split-
ting layers, allowing the decoder to fully learn different
sets of channels in parallel. Furthermore, optimization
for compression speed using neural networks was also
addressed by [17], which suggested several methods to
improve compression performance.

Compression on audio signals using AE-based neu-
ral networks has also experienced much progress. The
work of [34] outperformed MP3 in both compression ra-
tio and audio quality. Their models adopted the vector
quantization techniques proposed by [35]. The authors not
only optimized signal losses in the time domain, but also
minimized reconstruction losses in the frequency domain.
Furthermore, the coupling of AE and Generative Adver-
sarial Networks (GAN) [36] was leveraged to achieve a
high-quality compression model.

Neural networks have also been implemented to
compress volumetric scene data. Kim et al. [34] re-
placed fine-grained compression layers in their tree-based
models with neural networks, greatly enhancing the per-
formance on volumetric representation. Coordinate net-
works by [37] not only focused on learning the scene repre-
sentation but also provided great compression capability.

However, image and video compression models
mainly reconstructed integer pixels (or voxels), which
were only a subset of scientific data, where data types
ranged from integer to floating-point. As a result, sev-
eral studies have been conducted using neural networks
to enhance scientific data compression. Glaws et al. [38]
proposed an AE model, which was built upon 12 residual
blocks of convolution layers. The authors incorporated
three compression layers to reduce the data dimensions in
their AE’s architecture. The model was trained to com-
press turbulence data at a fixed compression ratio of 64.

Liu et al. [22] introduced a seven-layer AE model to
compress scientific data. The encoder consisted of three
fully connected layers, each of which compressed input
data by eight folds. Theoretically, the encoder could com-
press data by 512x (8%). Similar to the encoder, the de-
coder had three fully connected layers to decompress the
compressed data. A bottleneck Between the encoder and
decoder contained latent variables much smaller in size
than the inputs. However, this work mainly focused on
small-scale 1D data, whereas our models learned data rep-
resentation in higher dimensions, particularly in 2D and
3D. Another limitation of this model was that it only uti-
lized CPUS for compression, failing to fully utilize the
parallel computing power offered by GPUs [39].

Recently, a compression method proposed by Liu
et al. [21] achieved great results for 2D and 3D data.
Their AE-SZ framework consisted of a Lorenzo prediction
model and an AE model, each of which compressed the
data independently. The compression results from both
models were then compared for the framework to select
the model for the data being compressed. The compres-
sion ratio of their proposed framework on many scientific
data sets surpassed results from other hand-engineered
models and AE-based models. However, instead of opti-
mizing one particular model for each input, the framework
employed two distinct models to compress the same data.

Slightly different from traditional deep learning
models, physics-informed neural networks (PINNs) [40]
have been successfully developed to extrapolate data and
solve many scientific problems. Choi etal. [41] combined
PINN and variational autoencoder (VAE) [18] to com-
press plasma simulation data. Unlike other types of neural
networks, this PINN model optimized several physics con-
straints, such as mass, moment, and energy, along with the
reconstruction loss, i.e., L2 distance. Similar to our work,
the authors used integer quantized latent variables, which
could be reliably transmitted between different hardware
and software platforms as studied by [31].

AE-based structures are applied in various scientific
investigations. The authors of [42] utilize AE to capture
the latent representation of the input data. Following this,
they employ long-short-term-memory (LSTM) models for
forecasting sequential data across subsequent time inter-
vals. This strategy reduces computational demands by
minimizing the need for full dynamic simulations of drop
interactions within microfluidics devices. Similarly, the
authors of [43] present a methodology for predicting wild-
fire occurrences in future years based on input data from
the previous year. Leveraging an AE model, input data
undergo encoding via the AE’s encoder, mapping them
to their latent representation. This latent representation is
then fed into a recurrent network network (RNN) model
to obtain a representation of the subsequent time step, sub-
sequently which is decoded to derive predictions for that
step. Both studies employ Latent Assimilation (LA) tech-
niques to improve prediction accuracy. Additionally, the
work of [44] adopts the concept of sequence prediction
using RNN within the latent space generated by an AE
model. Furthermore, they present Variational Generalized
LA to refine the accuracy of sequential prediction within
the RRN-AE pipeline. These investigations indicate the
potential of utilizing the latent representation to forecast
data across subsequent time intervals, presenting an in-
triguing avenue for our future exploration.
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3. Methods

Our proposed model is built on three main components:
an encoder network (E), a quantizer (Q), and a decoder
network (D). The encoder network encodes data inputs to
output latent variables z.. The quantizer then processes
ze to produce a quantized latent representation z,. Fi-
nally, the decoder network reconstructs data from the com-
pressed representation z, to output £. The whole model is
trained in an end-to-end fashion to minimize a reconstruc-
tion loss and constraint losses imposed by the codebook of
the quantizer. The model architecture is depicted in Fig-
ure 1.

The detailed implementation of the model is given
in Table 1. Each stage (EncRes) of the Encoder is con-
nected to an intermediate convolution layer. The interme-
diate layer acts as a bridge to map the number of channels
to the desired vector dimension of the quantization layer.
The output representation is then quantized using the cor-
responding codebook.

Table I: The implementation of the model architecture.

Network Stage Operator Stride  #Channels  #Layers
Norm N/A N/A N/A 1
Encoder PreBlock Conv4x4 1 32 2
code EncRes 0 EncRes 2 64 3
EncRes_1 EncRes 2 128 3
DecRes_1 DecRes 2 64 3
Decoder DecRes 0 DecRes 2 32 3
PostBlock Conv4x4 1 1 2
De-norm N/A N/A N/A 1
. vQ_ 0 Quantization N/A N/A 1
Quantizer  GO7) Quantizaion  N/A N/A 1

3.1. Encoder & Decoder Architecture

As mentioned above, the encoder is trained to extract
data representation into latent spaces, whereas the de-
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Figure I: Model Architecture.
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coder decodes the latent variables to reconstruct the given
data. There are two most widely used reconstruction
errors, mean-squared error (MSE) and multi-scale struc-
tural similarity (MS-SSIM). Depending on targeting crite-
ria, either measure can be used to achieve desirable out-
comes. Both measures have been shown to be effective
metrics as they typically result in high-quality generated
images [20,26,27].

The encoder network E is created hierarchically.
The first level aggressively reduces the dimensions of the
inputs and learns their data representation. The second
level also performs slight dimension reduction. Data rep-
resentation from the second level is quantized by its cor-
responding vector quantizer. These quantized values are
then fed into the first-level vector quantizer. The second-
level quantization acts as a prior to the first-level quan-
tization. The additional information from the second-
level quantization improves the capability of the first-level
quantization, which leads to a better reconstruction qual-
ity. Although the second level creates slightly more bits
during compression, the improvements in reconstruction
quality significantly outweigh a slight decrease in com-
pression ratio.

The network E comprises several 2D convolution
layers and blocks of residual connections. The first two
convolution layers map inputs to a higher number of chan-
nels using a kernel size of 4. It is followed by a couple
of residual blocks, which consist of strided convolutions
with a kernel size of 5. Components of a residual block
are illustrated in Figure 2. The construction of residual
blocks is inspired by the model proposed by [14], which
achieves high performance for classification tasks without
significantly increasing the size of the model. Moreover,
residual blocks alleviate the vanishing gradient problem
and enable the implementation of deeper models, which
improves the expressiveness of our networks [45]. We
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use non-lincar GELU functions as our activation func-
tions [46]. A generalized divisive normalization (GDN)
is used to normalize the outputs of the residual block
and transform their distribution to be more Gaussian [47].
GDN has been shown to be effective for both image com-
pression [48] and scientific data compression [21]. The
encoder network can be simply represented as a mapping
function, as shown in (1).

Re = E(I), (1)

where E is the encoder network.

Convix1

Figure 2: Components of a residual block.

Convixl

The decoder network D is a mirror of the encoder
network E. Transposed convolution layers are used to re-
place strided convolutions. At the beginning of each hi-
erarchy, transposed convolutions alter the input of the de-
coder to acquire a suitable representation with C channels
for the following residual blocks. In general, all blocks
of the decoder loosely reverse the operations performed
by the encoder. Network D maps the latent representation
back to the original dimension, outputting reconstructed
data. The decoder can also be considered to be a mapping
function as shown in (2).

& = D(decoder _inputs), ?2)

where D is the encoder network.
3.2. Vector Quantizer

Although vanilla AE can perform dimension reduction, it
cannot flexibly generate data given fixed inputs. Varia-
tional Autoencoder (VAE) [18] and its variants are im-
plemented to improve reconstruction performance. VAEs
not only minimize the reconstruction loss but also learn
the distribution of the latent variable by optimizing the
Kullback—Leibler (KL) divergence. As a result, a more
diverse set of images can be generated with much higher
quality [19,49].

Based on the idea of VAE, we impose slightly dif-
ferent criteria on the objective function. Following a pro-
posed approach implemented in Vector Quantized Varia-
tional Autoencoder (VQ-VAE) [50], our model is trained

to minimize the reconstructed loss, i.e., L2 distance, as
well as optimize discrete codebooks. The latent represen-
tation encoded by the encoder is projected onto codebook
vectors. The vector with the smallest Euclidean distance
to the encoded latent variable, is selected to become the
decoder’s input as shown in (3).

2q = Q(ze) = argmin([[ze — gx|]), ©)

qL€Q

where ¢y, is a vector in codebook Q that has the smallest
Euclidean distance with the output of the decoder, z..

The quantizer outputs a set of integer values, which
are indices of quantized vectors. These indices are
then further compressed using a lossless compression
scheme, i.e. Huffman coding-based algorithms. The
size of compressed quantized data is significantly re-
duced because quantized values are in the form of inte-
gers, which are efficiently compressed by any lossless
compression algorithm.

Our training procedure for our codebooks is simi-
lar to the method described in [50]. Each codebook in
the model is updated using an exponential moving aver-
age with a decay of 0.99. The update is measured based
on changes in codebook entries after each training itera-
tion. A straight-through estimator [51] is implemented
to overcome the discontinuity of gradients created by dis-
crete codebooks. The estimator acts as an identity func-
tion that identically maps the gradients of the decoder to
the encoder in the backward propagation.

3.3. Preprocessing Large-Scale Data
3.3.1. Data Standardization

In this work, we focus on compressing large-scale high-
resolution scientific data obtained from Earth’s simulation.
Since each set of data has its own data distribution, it is
important to preprocess raw data prior to training. Sta-
tistical measures of data can be analyzed based on each
specific data type. The availability of statistics enables us
to use Gaussian standardization for data whose distribu-
tion is Gaussian. The technique is also applicable to dis-
tribution that approaches the Gaussian distribution. The
standardization method is shown in (4).
T —p

Tst = )
g

4)

where x is a data value, y is the mean of the data, and o is
the data standard deviation.
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The inverse of standardization is required for con-
verting the reconstructed data back to the actual value
range. The inverse is formulated in (5).

&)

However, if the data distribution is not Gaussian, di-
rectly applying standardization does not improve compres-
sion performance. In this scenario, logarithm scaling is a
technique used to transform the original data to its corre-
sponding logarithmic scale. This technique usually trans-
forms the data distribution to be close to Gaussian, which
enables us to effectively use the standardization method
on the data.

T =+ Tst %O

3.3.2. Missing Value Handling

Data masking is necessary for data compression in many
cases. In many scientific simulations, there are regions
not of interest to the researchers conducting experiments.
Those areas are generally assigned values that are ex-
tremely negative or easily distinguished from actual sim-
ulation values. Therefore, we use masking layers to in-
dicate valuable values and ignore unwanted regions in
our model. Although masking increases the storage size,
this redundancy is negligible as it consists of several inte-
ger values, which can be significantly compressed by any
standard lossless compression algorithm such as Huffman
coding-based compression schemes.

Missing values in data are also replaced by a differ-
ent value. The replacement values can be the mean or the
median of the entire available data. For simplicity, we as-
sign missing values with the data mean since data statistics
are readily available. After cleansing missing values and
masking the data, the data and their corresponding masks
are partitioned into small blocks.

3.3.3. Data Partitioning

Machine learning models generally cannot handle raw sci-
entific data because each dimension of any data is large
and cannot fit into the system’s memory. To address this
issue, data are partitioned into small blocks before training
or compression. Each dimension of a block is a power of
two. Specifically, we restrict the block to having a height
and width of 64 for the training process, as we observe that
this setting achieves the best reconstruction quality. Ad-
ditionally, a power of two in each block dimension makes
up-sampling and down-sampling efficient. No padding
or trimming is required for the outputs, saving additional
computing power.

However, the shapes of raw data are not always di-
visible by two, which is a requirement to have a block size

as apower of 2. In such cases, data whose size is not a mul-
tiple of the block size are padded. Padding is performed at
the edges of each dimension. For Earth’s simulation data,
we cyclically replicate data values at one edge and con-
catenate them at the other end. For example, to pad the
left edge of 2D data, values on the right edge are copied
and appended to the opposite side. This padding pattern is
especially helpful for treating continuous simulation data
with periodical boundary conditions, e.g., climate model-
ing data.

The partitioning technique mentioned above works
well in general. However, since all partitioned blocks are
discrete, the whole set of partitions does not include any
transition from one block to its adjacent neighbors. To
smooth out the boundary and make the transition from one
block to another more accurate, an overlapping block par-
tition technique is implemented [34]. Instead of creating
mutually exclusive blocks of data, adjacent blocks are par-
titioned in a way that they overlap with each other in a
small area. Specifically, assuming each block is of size
64 and there is an overlap of eight, the second block is
created to contain the last eight values of the first block
as well as the next 56 values. The data overlapping tech-
nique is implemented only during data training, while the
discrete data partitioning technique without overlapping
is used for testing and compression.

3.4. Objective Function
3.4.1. Reconstruction Loss

The reconstruction loss is the discrepancy between the
reconstructed and original data. We minimize the
L2 distance of the target and compressed data, i.c.
lrecon(,Z) = ||z — Z||2. The minimization simply
matches the compressed data to the original data as closely
as possible.

3.4.2. VQ Commitment Loss

The commitment loss accounts for the difference between
the quantized codebook vectors and outputs of the encoder.
Since quantization distorts the data, decreasing the dis-
tance between the quantized vectors and the original data
reduces the distortion. We impose an L2 distance con-
straint on the codebook vectors and their corresponding
inputs. The commitment loss, [y, is defined as in Equa-
tion (6).

—Q(zo)ll2,  (6)

lq(Zequ) = |[ze — zq||2 = ||z

where Q is the quantizer; z. and z, are outputs of the en-
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coder and their corresponding quantization values, respec-
tively.

Overall, the model is trained to optimize the follow-
ing objective.

L = Aecon * mask * lrecon + >\q * lq»

Q)

where mask is a masking layer, that indicates which
data points should be taken into account in optimiza-
tion; Arecon and A, are constant coefficients of the re-
construction and commitment losses, respectively. The
constant )\, is set to be 0.25 following the suggestion
by [35]. Meanwhile, A,cco, is set to 2 because the pa-
rameter slightly affects the trade-off between reconstruc-
tion quality and compression ratio. The objective func-
tion in Equation (7) is acquired based on the assumption
that quantization values are uniformly distributed. Uni-
form distribution leads to the removal of an additional KL
term in the objective because the term becomes a constant
with respect to encoder parameters [35].

3.5. Error-Bounded Technique

Reconstructed data from neural networks sometimes have
large distortions from the original data. To counteract the
large distortion of some reconstructed values, a straight-
through technique is introduced. The straight-though tech-
nique classifies reconstructed values into two groups, pre-
dictable and unpredictable. Reconstructed data that meet
the tolerance constraints are called predictable values. In
other words, predictable data have error values less than or
equal to a predefined threshold. Otherwise, they are unpre-
dictable values. Unlike predictable values, which can be
used directly as final reconstructed values, unpredictable
values have errors that exceed the threshold. Thus, cor-
responding true values and their locations are saved sep-
arately in a file to replace unpredictable values during re-
construction.

4. Availability of Data and
Materials

This paper uses existing, publicly available data from
SDRBench  (https://sdrbench.github.io/) for bench-
marking the performance of our model. Regarding
compression on our application data, the model com-
presses the High-Resolution Earth System Prediction
(1IHESP) data. The iHESP data have been deposited at
https://ihesp.github.io/archive/ and are publicly avail-
able. All original code has been deposited on Github at
https://github.com/hieutrungle/data-slim and is publicly
available as of the date of publication. Any additional

information required to reanalyze the data reported in this
paper is available from the lead contact upon request.

5. Experiments

5.1. Benchmark Data: SDRBench

Our proposed models are initially tested on published sci-
entific benchmark data, SDRBench [52]. This bench-
mark provides numerous simulation data from many dif-
ferent fields, ranging from electronic structures of atoms,
molecules to weather, and cosmology. The benchmark is
publicly available for different scientific purposes.

Even though we focus on compression 2D data, a
couple of 3D data sets are also being compressed to verify
the possibility of generalizing our architecture to higher-
dimension data. Table 2 summarizes several data sets and
some fields we use for our compression.

The 3D CESM data include comprehensive at-
tributes of cloud properties for many different altitudes,
which can be viewed as many 2D data stacking on top of
each other. Therefore, we use the 3D CESM data as a
training set for CESM cloud data, whereas all snapshots
of 2D CESM data are our testing data.

Table 2: Basic information of benchmark data from SDRBench.

Dataset Dimension Domain Field

CLDHGH
CLDMED

CESM 2D 1800x3600 Weather CLDLOW
CLDTOT

CESM 3D 26x1800x3600  Weather CLOUD

Temperature
NYX 3D 512x512x512 Cosmology Baryon density

5.2. High-Resolution Earth System
Prediction (iHESP) Data

The International Laboratory for High-Resolution Earth
System Prediction (iIHESP) [3] was a project aimed at de-
veloping more advanced modeling frameworks for pre-
dicting high-resolution multiscale Earth systems to im-
prove simulation and prediction of future changes in ex-
treme events. iHESP also provides numerous global and
regional high-resolution simulation data spanning hun-
dreds of years. The global climate was simulated us-
ing different high-resolution configurations of CESM ver-
sion 1.3 for atmosphere, land, ocean, and sea-ice. Mean-
while, regional data were generated from the ocean model
ROMS (Regional Ocean Modelling System) with the at-
mospheric model WRF (Weather Research and Forecast
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model) using the CESM/CIME coupling infrastructure.
All data are also publicly accessible.

Among a large array of ocean properties provided by
iHESP, sea surface temperature (SST) is one of the most
important attributes. The property is simulated over hun-
dreds of years, necessitating a substantial amount of stor-
age for the data. However, the large amount of available
data also enables us to leverage machine learning for com-
pression.

Basic information about SST data is presented in
Table 3. The first dimension of the data represents the evo-
lution in time. The next two dimensions are the height and
width of the data, respectively. General ocean informa-
tion, such as simulation history and climate coefficients, is
also included in the dataset metadata. Latitudes and longi-
tudes are also available to scale the data back to the global
coordinate system when it is required.

Table 3: Basic information of SST data.

Data Size Dimension Lowest Value = Highest Value

111.90 GB  3240x1800x3600 -1.95°C 34.84°C

Data preprocessing is crucial for SST in both train-
ing and compression. Temperature values are only avail-
able where sea water is present, whereas undefined values
are assigned to continents. In order to deal with missing
values, a masking layer is created to differentiate between
these regions.

The data are divided into two sets: a training set and
a testing set. The training set contains nearly ~100GB
of SST data while the testing set consists of temperature
data of the last 120 consecutive months in the simulation.
Data in the training set are partitioned using the overlap-
ping technique, while the discrete partitioning technique
is applied to the testing set. Both training and testing sets
contain blocks of data of size 64. During compression,
data are partitioned into blocks of size 256 for better reso-
lution.

6. Results and Discussion

6.1. Compression of Benchmark Data

6.1.1. 2D Data

The compression performance of our models on differ-
ent data sets is compared to other compression models,
namely SZ2.1 [53], ZFP [23] and AESZ [21]. Figure 3
shows that our proposed model outperforms other com-
pression schemes when bit-rates are below 0.40, which

are equivalent to compression ratios of greater than 80. At
a very low bit-rate of 0.22, the reconstructed data of our
model has a PSNR of 46.35 dB. This is an improvement
over the hybrid AESZ model, which requires a bit-rate of
around 0.37 to obtain the same PSNR (Table 4).

Table 4: Compression efficiency evaluated on CESM 2D CLDHGH
data with a target PSNR of approximately 46 dB.

Method Bit-Rate PSNR
Ours 0.22 46.35
AESZ 0.37 46.03
SZ2.1 0.61 46.22
zfp 1.54 45.84

However, the PSNR of the proposed model does not
follow the same trend as the compression performance of
other compression models. Our trained model has a fixed
set of parameters. To increase PSNR without training a
different model, we apply the straight-through method to
restrict the error-bound of the reconstructed data. There is
a possibility of training different models with larger latent
variables and codebooks to achieve much higher PSNR at
any given bit rate. However, with the goal of targeting
the low bit-rate regime, exhaustively exploring all possi-
ble combinations of neural networks over a wide range of
bit-rates is not in the scope of this work.

Our compression model is also used to compress dif-
ferent 2D data. The compression performance on many
different cloud data is illustrated in Figure 4. Since the
CESM 3D CLOUD data should be treated as 2D data
as suggested by domain scientists [52], its compression
results are presented together with other 2D data. It is
worth mentioning that compression on all CESM cloud
data uses the same model architecture with the exact same
weights. Even when applying the model to these data, it
obtains high PSNR while maintaining a very low bit rate.
The compression performance indicates that this particu-
lar model for CESM cloud data achieves a good general-
ization.

PSNR (dB)

bit-rate

—e—/fp —m=S72.1 —+—AESZ ——ours

Figure 3: Compression performance on CESM 2D CLDHGH
data.
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PSNR (dB)

0 1 2 3 4 H 6
bit-rate

CLDLOW (2D) CLDTOT (2D)  —+—CLDMED (2D) CLOUD (3D)

Figure 4: Compression performance of the proposed model
on different CESM cloud data.

6.1.2. 3D Data

The proposed model achieves reasonable compression on
3D benchmark data. As can be seen in Figure 5, at low
bit-rates, our model surpasses SZ2.1 and ZFP in terms of
performance. However, the quality of reconstruction from
the hybrid model - AESZ - is higher than our model. One
of many possible reasons for the weaker performance of
our compressor is that our model is designed using primar-
ily 2D convolution layers. Therefore, it does not have the
extensive capability to learn data representation in 3D. On
the other hand, when compressing 3D data, AESZ changes
its machine learning architecture to 3D convolution neural
networks. This change is one of the factors that increase
compression performance for volumetric data.

6.2. Compression of iHESP Sea Surface
Temperature (SST) Data

The compression results for the testing dataset of high-
resolution SST data show that the model can reconstruct
the data with high quality while maintaining a high com-
pression ratio even for large-scale simulation data. As

NYX Temperature (3D)

PSNR (dB)
= b

IS
a

0 1 2 3 4 5 6
bit-rate

—o—7FP —8-S72.] ——AESZ —&—ours

shown in Figure 6, after being compressed by a factor of
240, the reconstruction achieves a PSNR of 50.16. More-
over, in terms of visualization, it is unlikely that differ-
ences between the original and reconstructed data are de-
tected. However, there are some slightly noticeable distor-
tion areas, especially along coastal lines between oceans
and continents. Since data are only available for sea water,
data points on continents are set to be a suitable constant.
The assignment of the constant creates large variations in
values along the edges of continents, which hinders the
reconstruction ability of the model in those particular re-
gions.

Table 5 presents the compression performance of
the model on the testing data. The quality of reconstruc-
tion, PSNR, of each snapshot, varies from 48.58 to 51.5.
The reason for the differences in PSNR is that the data
distribution of each snapshot differs from time to time,
which leads to a variation in the quantization values from
codebooks; hence changes in the reconstruction quality.
Nevertheless, the deviation of the snapshots’ PSNR does
not vary much from the average of 50.04, indicating that
our model achieves stable performance across all data se-
quences.

Table 5: Compression performance of the proposed model on
testing SST data (data size: 4,144.60 MB).

Metrics Results
Compression ratio 231.54
PSNR (dB) 50.04
Compression speed (MB/s) 96.53
Decompression speed (MB/s) 87.43

Compression and decompression speeds are also ac-
ceptable. The compression speeds on HPC nodes are pre-
sented in Table 5. On average, it takes around 45 sec-

NYX Baryon Density (3D)

PSNR (dB)

bit-rate

——7FP —#-S72.1 —+—AESZ —&—ours

Figure 5: Compression performance on NYX 3D data. Left: Compression on NYX temperature. Right: Compression on NYX Baryon

density.
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Figure 6: A snapshot of the sea surface temperature (SST) data (original value range: [-1.82°C; 31.38°C]; PSNR: 51.31)

onds to complete compression or decompression for 4GB
of data. On a personal computer with an NVIDIA 3060
Ti accelerator, compression and decompression both take
around one and a half minutes on the same data. The small
difference between the two platforms indicates that the
compression pipeline is primarily bottlenecked by the data
transferring between CPUs and GPUs. However, com-
pression speed on the personal computer shows promising
results that the model is also suitable for compression on
small devices.

6.3. Ablation Study on iHESP Sea
Surface Temperature (SST) Data

We conduct experiments with different levels of quantiza-
tion to obtain the best trade-off between compression ratio
and reconstruction quality. Generally, increasing the num-
ber of quantization layers should improve the quality of
the reconstruction while reducing the compression ratio.
However, as shown in Table 6, our results demonstrate
that the two-stage architecture achieves the lowest MSE
on the testing SST data. Although our implementation can
scale up to an arbitrary number of quantization layers, the
reconstruction quality does not always improve. One pos-
sible explanation for this phenomenon is that when the ar-
chitecture becomes too deep, it might overfit the training
data, which leads to worse performance.

In terms of data pre-processing techniques, using the
two-stage model, the combination of the uniform mask-
ing and overlapping partitioning method achieves the best
performance over other techniques (Table 7). For the
weighted masking model, we use larger weights for re-
gions, which are more important during simulation, while
lower the weights for other sections. However, the perfor-
mance of the weighted version reduces the testing MSE

since the model focuses more on those targeted regions
with the compromise for other areas.

Table 6: Compression performance of different model architec-
tures on SST data.

Model Testing MSE
Single Stage Quantization 0.119
Two Stage Quantization 0.012
Three Stage Quantization 0.030

Table 7: Compression performance of the two-stage quantization
model for different preprocessing techniques on SST data.

Model Testing MSE
masking + overlapping partition 0.012
weighted masking + overlapping partition 0.021
masking + discrete partition 0.020

6.4. Limitation

One of many limitations of the proposed model, and pos-
sibly the biggest limitation, is the training of neural net-
works (NNs). NNs perform best on data that have a sim-
ilar distribution to the data being trained on. Therefore,
if out-of-distribution data are given to a machine learning
model, the results might not be reliable and, oftentimes,
incorrect. In our case, which is the Earth system, each dis-
tinct attribute requires a different model. This limitation
may restrict the usability of our proposed model. How-
ever, transfer learning techniques can be used to reuse the
architecture for different types of data [54].

Secondly, one architecture might not perform well
for different types of data because of the difference in data
distributions. Each distribution has a different property
which makes it difficult to select the correct architecture
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for that data. As a result, exploring an optimal architec-
ture for a data type might require a tremendous amount of
effort.

7. Conclusions

Our proposed model proves to be effective in compress-
ing floating-point scientific data, both on 2D benchmark
data and our large-scale high-resolution data. It achieves
a high compression ratio while preserving a high quality
of reconstruction. The model outperforms other state-of-
the-art models in some benchmark data sets, particularly
2D simulation data. However, there is room for further
improvement. Other lossless compression schemes, such
as arithmetic coding, which offers better compression per-
formance, can be used to replace Huffman coding. The
model can also be further improved by optimizing the rate
loss term, potentially leading to a better compression ratio.
Furthermore, the compression pipeline of the proposed
model can be optimized to improve compression speed.
Since scientific data compression using neural networks
is still in its early stages, there is so much more poten-
tial improvement that can be achieved for future research
along this line.
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Appendix A. Additional
Experiments

Appendix A.l. Frequency Loss Term

We conduct experiments that take into account loss terms
in the frequency domain of the data. Both the input and
reconstruction undergo transformation into the frequency
domain using the Fast Fourier Transform (FFT). The L2
distance between the two transformed sets is then calcu-
lated using Equation (A1). This added term forces the
model to directly minimize errors between high- and low-
frequency components of the L2 distance.

lppi(z, &) = ||[FFT(x) — FFT()[]2,  (Al)

where x and & are inputs and reconstructed data, respec-
tively.

The FFT loss, 5, is added with other losses to cre-
ate an objective function of the model as shown in Equa-
tion (A2).

L= )\Tecon *mask * lrecon + Aq * lq + )\fft * lfft7 (AZ)

where Arccon, Ag, and Agsy are constant coefficients of
the reconstruction, commitment losses, and FFT loss, re-
spectively.
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Appendix A.2. Results

Our model trained with the added FFT loss performs rea-
sonably well for the iIHESP sea surface temperature (SST)
data set. At a compression ratio of 221.63, the model
achieves a PSNR of 47.04 for the reconstruction. Despite
having a good quality of reconstruction, its performance
is surpassed by the model trained without the added FFT
loss, as discussed in Section 6, which achieves an average
PSNR of 50.04 at a compression ratio of 231.54. One pos-
sible explanation for the lower reconstruction quality is
that there is a trade-off between the MSE terms in the time
domain and the frequency domain during training. While

the MSE loss term in the time domain learn data repre-
sentation in a particular region, the FFT loss term focuses
on different regions. As a result, the quantitative result,
PSNR, of the "FFT model” is outperformed by its coun-
terpart.

Appendix B. Additional
Visualization Results

Additional results of the compression using our pro-
posed model are provided in this section. Figures Al—
A7 show visualization results for compression on differ-
ent data sets.

Figure Al: A snapshot of the sea surface temperature (SST) original data.

20 25 30

Figure A2: A snapshot of the sea surface temperature (SST) reconstructed data of the data in Figure A1 (PSNR: 51.31, compression

ratio: 231.54).
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Figure A3: Compression for CESM CLDHGH 2D data (original value range: [3.38e-07;0.92]; compression ratio: 122.73; PSNR:
46.35).

reconstructed

Figure A5: Compression for CESM CLDMED 2D data (PSNR: 42.63, compression ratio: 133.99).
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original
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Figure A6: Compression for CESM CLDTOT 2D data (PSNR: 42.71, compression ratio: 127.87).

0.0 0.1 0.2

reconstructed

Figure A7: Compression for a snapshot of CESM CLOUD 3D data (PSNR: 48.51, compression ratio: 210.97).
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