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Abstract 
Short-chain fatty acids (SCFAs), which are fatty acids with fewer than six carbon atoms, are primarily produced by gut microbiota 
through fermentation of dietary fibers. They interact with various receptors on target cells, including G-protein coupled receptors 
(GPCRs) and free fatty acid receptors (FFARs). These interactions induce significant epigenetic modifications, such as the inhibi- 
tion of histone deacetylases (HDACs) and the regulation of several microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). 
SCFAs reprogram the tumor microenvironment (TME) by promoting the recruitment and effector function of cluster of differen- 
tiation (CD)8⁺ T cells and reducing regulatory T cell (Treg) activity, thereby converting the TME from an immunosuppressive to 
an immunoreactive state. They modulate the differentiation and activity of various immune cell subsets, including macrophages, 
dendritic cells (DCs), natural killer (NK) cells, neutrophils, T cells, B cells, and myeloid-derived suppressor cells (MDSCs). SCFAs 
also precipitate anti-growth effects in tumor cells by hampering glycolysis and enhancing fatty acid oxidation. The idea of integrat- 
ing SCFAs with immunotherapy for cancer treatment has garnered considerable interest in recent years. However, more work is 
still needed to better understand the molecular underpinnings of the interaction between SCFAs and different cell subsets within 
the TME. Further investigation of issues relating to dosing, therapeutic efficacy, and safety of exogenously administered SCFAs in 
cancer patients, particularly immunocompromised patients, is also in order. 
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1. Introduction 

SCFAs typically contain fewer than six carbon atoms. 
They are produced primarily through the fermentation 
of dietary fibers by beneficial gut bacteria in the colon. 
The most common SCFAs include acetate, propionate, 
and butyrate. The TME is a complex system consisting 
of immune, stromal, and tumor cells that interact to in- 
fluence cancer progression [1]. Innate and adaptive anti- 
tumor immune responses within the TME are key to tu- 
mor control [2]. However, tumors often evade immu- 
nity, weakening surveillance and enabling progression [3]. 
Mounting evidence suggests that SCFAs play a signifi- 
cant role in transforming the immunosuppressive TME 

into one that supports effective anti-tumor immunity [4]. 
SCFAs mediate their effects through signaling cascades 
transduced via several SCFA receptors, including some 
GPCRs and FFARs on target cells. This leads to signifi- 
cant epigenetic modifications in the form of methylation 
and the inhibition of HDACs [5]. These changes modu- 
late several inflammatory pathways affecting macrophage 
polarization, NK cell activity, DC antigen presentation, 
and lymphocyte (T and B cells) functional differentiation 
within the TME [6]. SCFAs also variably influence tumor 
metabolism by altering glycolysis, enhancing oxidative 
phosphorylation, and regulating lipid metabolism depend- 
ing on the type of tumor [7]. They also modulate MDSCs, 
key immunosuppressive cells in the TME [8]. Although 
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SCFAs present considerable therapeutic potential as they 
enhance anti-tumor immunity, the risk of overwhelming 
the immune response and/or promoting immune evasion 
of tumor cells cannot be discounted [9]. More research is 
needed to fully understand the molecular mechanisms by 
which SCFAs enhance anti-tumor immunity while simul- 
taneously suppressing tumor growth. Additionally, many 
aspects of the clinical application of SCFAs as adjunctive 
therapy in cancer patients receiving immunotherapy still 
need to be ironed out. This minireview commences with 
a general introduction to SCFAs and their anti-tumor ef- 
fects and concludes with some key unanswered questions 
regarding their basic biology and clinical utility. 

2. Immunomodulatory Effects of 
SCFAs in the TME 

2.1. SCFAs and Innate Immunity 

Innate immunity is the first line of defense against tumors, 
detecting damage- and tumor-associated molecular pat- 
terns (DAMPs, TAMPs) to trigger inflammation and im- 
mune surveillance [10]. SCFAs modulate innate immune 
cells in the TME in several ways that affect tumor pro- 
gression. In general terms, macrophages can polarize into 
an M1 (pro-inflammatory) or an M2 (anti-inflammatory) 
state. SCFAs such as butyrate and propionate tend to pro- 
mote M1 polarization through transcriptional and epige- 
netic regulation [11]. They upregulate the expression of 
tumor necrosis factor-alpha (TNF-α), interleukin-12 (IL- 
12), interferon gamma (IFN-γ), nitric oxide (NO), while 
suppressing the expression of several M2 markers, includ- 
ing arginase 1 (ARG1), IL-10, and tumor growth factor- 
beta (TGF-β), and inhibiting HDAC from blocking tumor- 
promoting genes [9,12,13]. In DCs, SCFAs enhance the 
expression of major histocompatibility complex-II (MHC- 
II), CD80, and CD86, which facilitate T cell antigen re- 
ceptor (TCR) and the co-stimulatory receptor CD28 en- 
gagement, thereby boosting T-cell priming [14,15]. In 
some contexts, SCFAs have been shown to promote the 
rise of tolerogenic DCs, increase IL-10 production, and 
reduce IL-12 production, thus contributing to immune 
evasion [16]. SCFAs can enhance NK cell cytotoxicity 
by upregulating the expression of natural killer group 2 
member D (NKG2D), perforin, and granzyme B, and by 
improving NK’s metabolic fitness through mitochondrial 
biogenesis and fatty acid oxidation [17]. HDAC inhibition 
further amplifies the expression of NK effector genes [18]. 
Neutrophils are also modulated by SCFAs through various 
chemokines, including CXCR1 and CXCL2. For exam- 
ple, SCFAs enhance the capacity of neutrophils to gen- 
erate reactive oxygen species (ROS) and perform phago- 

cytosis, but whether they affect neutrophil extracellular 
trap (NET) formation (NETosis) remains unclear [19,20]. 
SCFAs modulate immune cell migration, chemokine and 
cytokine release, and inflammatory signaling in the TME, 
primarily through their ability to interact with innate re- 
ceptors, including toll-like receptors (TLRs) and GPCRs 
(GPR41, GPR43, GPR109A) [21]. 

2.2. SCFAs and Adaptive Immunity 

Several studies have elaborated on the capacity of SCFAs 
to modulate T and B lymphocytes through epigenetic reg- 
ulation, metabolic reprogramming, and cytokine signal- 
ing [22]. By inhibiting HDACs and altering metabolism, 
SCFAs enhance CD8⁺ T cell differentiation and the pro- 
duction of IFN-γ, granzyme B, and perforin for cyto- 
toxic activity, and promote the generation of adaptive 
memory for sustained tumor immunosurveillance [23,24]. 
Moreover, SCFAs promote T helper 1 (Th1) differen- 
tiation, thereby enhancing IFN-γ and IL-2 production, 
suppressing Th2 cytokines, eventually reducing IL-4 and 
IL-5, and modulating Th17 activity in a way that main- 
tains anti-tumor immunity while limiting pathogenic in- 
flammation [18,25,26]. Butyrate and propionate promote 
the expansion of forkhead box P3 (Foxp3)⁺ regulatory T 
(Treg) cells through histone deacetylase (HDAC) inhibi- 
tion, thereby contributing to immune tolerance. However, 
they may contribute to the development of an immuno- 
suppressive TME, especially when excessive accumula- 
tion of Tregs occurs [27]. While SCFA-induced Tregs 
may mitigate chronic inflammation associated with tu- 
morigenesis, the fact that they can precipitate immuno- 
suppressive effects calls for caution when considering 
their therapeutic utility. SCFAs enhance cytotoxic T lym- 
phocyte (CTL) survival and function, and hence promote 
CTL-mediated tumor eradication through their ability to 
support metabolic adaptability (mitochondrial function 
and fatty acid oxidation), especially in nutrient-deprived 
TME [28]. They also reduce T cell exhaustion by de- 
creasing the expression of programmed cell death pro- 
tein 1 (PD-1), T-cell immunoglobulin and mucin-domain 
containing-3 (TIM-3), and lymphocyte activation gene 
3 (LAG-3). Combined, these effects are believed to im- 
prove patient responsiveness to checkpoint blockade and 
to expand the T cell memory pool [29,30]. SCFAs also 
seem to modulate humoral immunity within the TME by, 
for example, promoting B cell proliferation and enhancing 
isotype (IgA/IgG ) switching [31]. So far, little is known 
regarding the effects of SCFAs on the differentiation or 
activity of TME immunosuppressive regulatory B cells 
(Bregs) [32]. 
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2.3. SCFAs and MDSCs 

The TME is an immunosuppressive niche that promotes tu- 
mor growth and immune evasion [33]. MDSCs, key TME 
components, suppress T cell activity and promote Treg 
expansion through several mediators, including ARG1, 
inducible nitric oxide synthase (iNOS), ROS, and TGF- 
β [34]. Targeting MDSCs is thus a promising strategy 
in cancer immunotherapy. Gut microbiota-derived SC- 
FAs (acetate, propionate, and butyrate) modulate immu- 
nity through SCFA receptors (GPCRs) GPR41, GPR43, 
GPR109A, and through the inhibition of HDACs [35, 
36]. These pathways affect immune cell differentiation 
and function, including that of MDSCs [37]. The ef- 
fects of SCFAs on MDSCs are context-dependent. For 
example, butyrate and propionate promote MDSC ex- 
pansion and immunosuppressive activities by enhancing 
ARG1 and iNOS expression [38]. Conversely, SCFAs 
may reprogram MDSCs toward less suppressive pheno- 
types. Butyrate-driven HDAC inhibition and GPR109A 
signaling have been linked to reduced MDSC-mediated 
suppression and improved anti-tumor immunity [39,40]. 
SCFAs also shape MDSC metabolism, influencing glycol- 
ysis, oxidative phosphorylation, and fatty acid metabolism. 
Butyrate, in particular, promotes oxidative metabolism 
and mitochondrial function, potentially impairing MDSC 
suppressive activity [41,42]. Understanding these para- 
doxical effects of SCFAs on MDSC regulation may help 
identify novel strategies to enhance anti-tumor immunity. 

2.4. SCFAs and Tumor Cell Metabolism 

Being metabolically adept enables cancer cells to sustain 
growth, resist apoptosis, and evade immunity [43]. SC- 
FAs, as key metabolic modulators in the TME, influence 
glucose and lipid metabolism, mitochondrial function, and 
redox balance [44,45]. Generally, cancer cells favor aero- 
bic glycolysis (Warburg effect) for adenosine triphosphate 
(ATP) production. SCFAs counter this by downregulating 
the production of the glycolytic enzymes hexokinase 2 
(HK2) and pyruvate kinase M2 (PKM2) and reducing glu- 
cose uptake and lactate output [46]. SCFAs also activate 
the AMP-activated protein kinase (AMPK), inhibiting the 
mammalian target of rapamycin (mTOR) signaling and 
curbing anabolic growth [47]. SCFAs enhance oxidative 
phosphorylation, shifting energy production from glycol- 
ysis and limiting tumor proliferation. In lipid metabolism, 
SCFAs suppress lipogenesis by downregulating the ex- 
pression of sterol regulatory element-binding protein-1 
(SREBP-1) and fatty acid synthase (FASN) [48,49], while 
promoting fatty acid oxidation (FAO) via peroxisome 
proliferator-activated receptor-gamma (PPAR-γ). These 

effects increase ATP production and reduce lipid accu- 
mulation, which is a characteristic feature in several ag- 
gressive, chemoresistant tumors [50]. SCFAs also pre- 
vent lipid droplet buildup, a hallmark of invasive cancers. 
SCFAs support mitochondrial function by fueling the tri- 
carboxylic acid (TCA) cycle, boosting nicotinamide de- 
hydrogenase “nicotinamide adenine dinucleotide (NAD) 
+ hydrogen” (NADH) and ATP production, and restoring 
mitochondrial health in normal cells [51,52]. They reg- 
ulate oxidative stress by increasing antioxidant enzymes 
superoxide dismutase (SOD) and glutathione peroxidase 
(GPx), protecting normal cells while enhancing ROS in 
tumor cells [53]. Additionally, SCFAs upregulate the 
expression of peroxisome proliferator-activated receptor 
γ coactivator 1 alpha (PGC-1α), promoting mitochon- 
drial biogenesis and counteracting metabolic dysregula- 
tion [54]. 

2.5. SCFAs and the Expression of 
miRNAs and lncRNAs in TME 

Beyond immune regulation, SCFAs, mainly butyrate, pro- 
pionate, and acetate, are involved in regulating the expres- 
sion of several gene sets in different cell types within 
the TME through HDAC inhibition and chromatin re- 
modeling [55]. Among the genes that are regulated by 
SCFAs are several miRNAs and lncRNAs, which subse- 
quently regulate tumor progression, immune evasion, and 
metabolic reprogramming [56,57]. For example, SCFAs 
have been reported to upregulate the expression of tumor- 
suppressive miRNAs like miR-34a, which inhibits Wnt/β- 
catenin and Notch signaling [58], miR-200 family, which 
blocks epithelial-mesenchymal transition (EMT) and en- 
hances chemosensitivity [59], miR-146a, which reduces 
inflammation and M2 polarization [60], miR-124, which 
boosts CD8⁺ T cell cytotoxicity, and miR-155, which pro- 
motes M1 polarization and T cell activation [61]. More- 
over, several SCFAs were reported to downregulate the ex- 
pression of oncogenic miRNAs, including miR-21, miR- 
181a, miR-222/221, and miR-27a, all of which promote 
tumor growth, immune suppression, and/or metabolic re- 
programming [62–65]. SCFAs also regulate lncRNAs 
by upregulating tumor suppressors like the maternally- 
expressed 3 gene (MEG3; induces apoptosis) [66], nuclear 
paraspeckle assembly transcript 1 (NEAT1; modulates 
immunity), growth arrest-specific transcript 5 (GAS5; 
enhances T cell function) [67], tumor suppressor candi- 
date 7 (TUSC7; inhibits proliferation) [68], and long in- 
tergenic non-protein coding RNA, and p53 induced tran- 
script (LINC-PINT; activates p53 signaling) [69]. At the 
same time, SCFAs have been reported to downregulate 
the expression of several oncogenic lncRNAs, including 
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metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1), HOX transcript antisense RNA (HOTAIR), 
small nucleolar RNA host gene 16 (SNHG16), urothelial 
cancer associated 1 (UCA1), and plasmacytoma variant 
translocation 1 (PVT1), which drive metastasis, immune 
evasion, and chemoresistance [70–74]. In short, SCFAs 
regulate key lncRNAs in the TME, contributing to tumor 
suppression by enhancing immunity and disrupting onco- 
genic signaling. 

3. Standing Questions and Future 
Perspectives 

There is ample evidence to suggest that integrating SC- 
FAs with immunotherapy enhances treatment outcomes in 
colorectal cancer (CRC), breast cancer, melanoma, lung 
cancer, and hepatocellular carcinoma (HCC), but not in 
glioblastoma, prostate, and ovarian cancer. This suggests 
that the anti-tumor effects precipitated by SCFAs could be 
cancer type-dependent, which raises the question of how 
cancers that respond positively to SCFA plus immunother- 
apy differ from those that do not. Focusing on this ques- 
tion may help identify cellular and molecular correlates 
that will inform future work on the therapeutic utility of 
SCFAs. One of the critical aspects to investigate here 
is the expression patterns of SCFA receptors and the in- 
tegrity of the pathways initiated by SCFA receptor signal- 
ing in different types of cancer. Similarly related to this 
issue is whether specific effects precipitated by SCFAs in 
target cells of the TME can be assigned to specific SCFA 
receptors. SCFA-induced HDAC inhibition affects many 
genes, some of which play important roles in modulating 
the TME in favor of tumor regression. Searching for other 
genes that are subject to HDAC inhibition-dependent reg- 
ulation should help in further appreciating the full extent 
of the anti-tumor effects of SCFAs within the TME. The 
absence of specific biomarkers for assessing the therapeu- 
tic value of SCFAs further complicates the issue. 

SCFAs play a crucial role in the differentiation and 
function of various immune cell subsets. The exact mech- 
anism(s) underlying the immunomodulatory effects of SC- 
FAs, particularly as they relate to macrophage polarization 
and Th cell differentiation, have yet to be elucidated. A de- 
tailed understanding of how SCFAs drive the differentia- 
tion of MDSCs is also pivotal to realistically assessing the 
risks of SCFA-based therapy in cancer patients. Exploring 
the therapeutic utility of SCFA-induced differentiation of 
MDSCs in inflammatory and autoimmune diseases also 
merits further investigation. 

4. Conclusions 

The gut microbiota metabolizes dietary fibers to produce 
SCFAs. Consumption of fiber-rich foods should, by def- 
inition, increase the concentration of SCFAs in the blood 
and tissues. However, determining the amount of fiber- 
rich food required to produce therapeutic levels of SCFAs 
remains unclear, making it difficult to calculate the appro- 
priate dietary intake. Further, a detailed understanding of 
the pharmacokinetics and pharmacodynamics of SCFAs is 
still lacking. Moreover, tissue infiltration by SCFAs needs 
to be further investigated, especially in the case of hypoxic 
cores of solid tumors. Would too much SCFAs in the circu- 
lation and/or the TME overwhelm the anti-tumor immune 
response? Could insufficient SCFA levels contribute to 
immune tolerance and hinder rejection? Assessing the im- 
pact of dysbiosis resulting from antibiotics or chemother- 
apy, for example, on the type and concentration of SCFAs 
produced in cancer patients warrants further investigation. 
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