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Abstract

Precision Oncology has brought about a complete paradigm shift in cancer treatment
approaches from Histology-guided regimes to Genomic-anchored, precision-cancer therapies.
This paper reviews the major milestones in basic translational work in cancer genomics,
evolution in clinical trial designs, and translational activities led by top Universities such as
Harvard, MIT, Oxford, and Cambridge. This paper describes the major translational
breakthroughs such as The Cancer Genome Atlas (TCGA) project, Functional Genomics with
CRISPR, Live Sequencing platforms like MatchMiner, and underscores the need for their
collective advancement in stratifying patients and personalizing treatments. This paper also
showcases how cases from major institutions have aided in integrating multi-omics, adaptive
clinical trials, and ethical Al approaches in the realm of research and clinical practice. Digital
Twin models in MIT, GenOMICC in Oxford, and Spatial Omics in Cambridge demonstrate
diversified, mutually supportive approaches in the realm of translational precision medicine.
Emerging approaches such as Single-Cell Sequencing, Spatial Omics, Al-enriched clinical
trials demonstrate an imminent future marked by learning health platforms. The paper also
underscores the impending issues in Equity, Harmonization, and variant understanding,
contrary to the basic scientific breakthroughs. Disparities in clinical trials and a lack of

representation in diverse populations might accentuate global health inequities. We believe
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Precision Oncology mustering pioneer breakthroughs in Technological, Governance, Political,
and Ethical domains. This paper also offers an inclusive blueprint in demarcating the
limitations in Precision Oncology, intersecting Genomic Understanding, innovative clinical
trials, and Socio-politics, prying into pioneer breakthroughs in treatments from renowned
institutions to universally practical approaches in global health ecosystems.

Keywords: precision oncology; genomic medicine, adaptive clinical trials, artificial

intelligence in cancer, translational research.

Highlights:

e Genomic profiling has revolutionised cancer classification, risk stratification, and
treatment selection.

e Adaptive trial designs (e.g., basket, umbrella, and platform trials) are key to matching
therapies to tumour genomics.

e Harvard, MIT, Oxford, and Cambridge lead in translational precision oncology through
innovation in diagnostics, Al, and ethical frameworks.

e Barriers such as variant interpretation, data equity, and global access remain critical
challenges.

e The future of precision oncology lies in real-time multi-omics integration, federated

data systems, and Al-driven trial governance.
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1. Introduction:

1.1 The Rise of Genomic Precision in Oncology

In the last 20 years advances in molecular profiling, next-generation sequencing (NGS) and
computational biology have dramatically changed the oncology landscape. As a result of
precision oncology, which utilizes genomic, transcriptomic and epigenetic data to make
decisions about therapies, the standards of care for many cancer types - including metastatic
breast cancer, cholangiocarcinoma, neuroendocrine tumors, and gliomas - have been rewritten.
Studies like The Cancer Genome Atlas (TCGA) and the International Cancer Genome
Consortium (ICGC) helped to facilitate this transition from tumor classification using
histopathology, to tumor/molecular subtypes and actionable mutations [1], [2]. Today, large-
scale profiling of tumor genomes is becoming a standard part of routine oncology practice,
providing new opportunities for targeted therapy, and early diagnosis, and real-time monitoring
by liquid biopsies [3], [4]. Yet, although we are ushering in an era of precision oncology,
clinical translation of genomic knowledge to therapy is still faced with many challenges. There
is the troubled history of targeted agents failing late in developmental trials, that are then
hampered by acquired resistance. It is troubling to realize a lack of representation of minority
population genomic data [5], [6]. Moreover, understanding tumor heterogeneity both between
patients (inter-subject) and within a patient's tumor sample (intra-subject) is exemplified by the
limitations of tumor tissue and single site biopsies and highlights a need for longitudinal and
multi-modal data acquisition [7]. This review presents an in-depth discussion on the
translational path of precision oncology, incorporating the advances in genomics and the
movement of clinical trials. Through institutional insights culled from Harvard Medical School,
Broad Institute, MIT, University of Oxford, and University of Cambridge, this discussion
defines how such hotbeds of excellence have brought major breakthroughs in their respective
genomics, in addition to establishing innovative approaches in the design of clinical trials. At
Harvard and the Broad, programs like MSK-IMPACT and OncoPanel have allowed for large-
scale integration of clinical sequencing, while also contributing to national scale initiatives,
such as NCI-MATCH [8], [9]. MIT's interdisciplinary convergence model has resulted in,
among other innovations, novel approaches to nanoparticle drug delivery and organoid-based

pre-screening for clinical trials [10]. Oxford and Cambridge have been integral in pioneering
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adaptive and biomarker-enhanced trial designs through programs like the UK 100,000
Genomes Project, FOCUS4, and TRACERx [11], [12]. We argue that precision oncology
should no longer be regarded as a linear process from mutation to drug. Instead, we must view
it as a dynamic, iterative process that takes advantage of real-time molecular information, Al-
assisted process, and patient-centred endpoints. The viability of systems under this framework
does not only depend on scientific advances, but also there is a point of need for infrastructure,
regulatory, and equity considerations. There is a need to overcome genomic data interpretation
bottlenecks, harmonise international trial methods, and broaden access to molecular
diagnostics, especially in low- and middle-income contexts. By putting together a range of data
across sub-disciplines and institutions, this review provides strategic and academic
commentary on how genomics led precision oncology is being implemented through cancer
clinical trials, in a historical analysis. Planning beyond what has been accomplished, we want
to try to address what will threaten genomic insights to translate into impactful, measurable

clinical outcome; especially in relation to pan-cancer, biomarker-driven, or Al-supported trials.

2. Genomic Foundations of Precision Oncology

Molecular characterisation of cancer has progressed from identifying recurrent mutations in
protein coding genes to revealing the considerable complexity of the cancer genome and its
functional consequences. Genomics has facilitated the dis-assembly of tumour biology with an
unparalleled resolution, revealing layers of somatic mutations, copy number variation,
structural rearrangements, chromatin organisation and epigenomic landscapes that interact to

drive oncogenesis.

2.1 Comprehensive Cataloguing of Somatic Variants

The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC)
ushered in the age of large-scale and systematic characterisation of a variety of tumour types,
resulting in massive public warehouses of genomic, transcriptomic and epigenomic data.
Integrative analyses of over 33 cancer types from TCGA revealed recurrently mutated genes
such as TP53, PIK3CA, and KRAS, novel fusion events, and widespread dysregulation of gene
expression via epigenetic silencing through aberrant DNA methylation and enhancer hijacking
[2, 13]. In concert, these studies provided a springboard for pan-cancer analyses, beginning to

understand commonalities and differences among tumour types beyond that of tissue of origin.
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The Cancer Cell Line Encyclopedia (CCLE) from the Broad Institute and the Genomics of
Drug Sensitivity in Cancer (GDSC) resource from the Sanger Institute provide systems-level
connectivity between genomic alterations and pharmacological response across hundreds of
human cancer cell lines [14], [15]. The datasets have helped not only to guide drug repurposing
efforts, but also to develop and train machine learning methods to predict therapeutic response
based on mutational profiles. Utilizing the Mutational Signatures Framework developed by the
Wellcome Centre for Human Genetics at Oxford, several mutagenic processes have been
identified: UV light (Signature 7), activity from the APOBEC family of deaminases (Signatures
2 and 13), and defective DNA mismatch repair (Signature 6) are now included in clinical
genomics workflows to provide mechanistic understanding and support treatment choices,
including the use of immune checkpoint inhibitors in tumours deficient in mismatch repair
[16]. Cambridge has developed computational methods that include algorithms for clonal
deconvolution (e.g., PyClone, SciClone) through the CRUK Cambridge Institute and European
Bioinformatics Institute (EBI). These algorithms have provided new insights concerning clonal
architecture and evolutionary patterns as the patient is placed under treatment pressure [17].
Despite these advances, genomic datasets including TCGA carry a bias toward individuals of
European ancestry and while these assertions have improved generalizability across
populations, limited availability is still a significant barrier for equitable clinical application.
The underrepresentation of genomic analyses from diverse human populations is a major issue
with respect to global health equity. However, there have been several recent developments
such as the Pan-Cancer Analysis of Whole Genomes (PCAWG) project which has included
whole-genome analyses and identified mutations in the noncoding genome, complex structural

variations, and regulatory alterations that were previously untapped with exome sequencing.

2.2 Functional Genomics: From Mutation to Mechanism

To move from mutation catalogues to mechanistic insight, high-throughput functional screens
are essential. CRISPR-Cas9 knockout libraries have allowed for genome-wide studies of gene
essentiality, identifying not only genetic dependencies but also synthetic lethal relationships
(e.g., BRCA-deficient cells when perturbed with PARP inhibitors) or context-specific
dependencies [18]. The Broad Institute developed the Dependency Map (DepMap) project to
examine CRISPR and RNAI data alongside gene expression, mutation status and drug response

to characterise lineage-specific vulnerabilities or pan-cancer genetic dependencies. This map
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of cancer gene dependencies has already been used to design selective inhibitors against genes
that are essential only in specific tumour types, such as WRN helicase in microsatellite
instability-high (MSI-H) tumours and STAG2 in Ewing sarcoma [19]. At MIT, CRISPR screens
have already been adapted to combine single-cell RNA sequencing readouts with pooled
combinatorial perturbations in order to identify buffering networks and insights into gene-gene
interactions that are critically important for therapy resistance [20]. Simultaneously, at Oxford's
Target Discovery Institute and Cambridge's Gurdon Institute, the same groups have started
first-of-their-kind functional screens in 3D organoid cultures and patient-derived xenograft
(PDX) cultures to better mimic the heterogeneity of living tumours in vitro [21]. Furthermore,
Al-enabled models have recently started to combine existing CRISPR screen outputs with
chromatin architecture and transcriptomic landscapes to develop models of regulatory
interactions and regulatory vulnerabilities in specific contexts (e.g., GraphReg, CrisprBrain).
These types of models allow for prioritisation of not only noncoding regulatory elements but

also of synthetic lethal pairs (including, in rare or low frequency contexts).

2.3 Clinical-Grade Genomic Diagnostics and Decision Support

Incorporating genomic information into clinical workflows must be done using high fidelity,
regulatory-grade assays for genomic cancer diagnostics. For example, MSK-IMPACT and
Harvard's OncoPanel are hybrid-capture NGS panels that can identify somatic mutations,
CNVs and rearrangements in medically actionable genes. Results are enriched with trial
eligibility, utilizing platforms such as MatchMiner, which connect with prospective patients to
studies relevant to their circumstance [9]. The NHS genomics offer has been developed to
encompass whole genome sequencing (WGS) as a diagnostic tool in its cancer services through
the 100,000 Genomes Project at Oxford and Cambridge, and produce curated calls for somatic
and germline mutations to support both treatment and familiy risk assessment. The datasets
also enable longitudinal EHRs so that correlative outcome analyses are possible [22]. An area
of significant bottleneck within clinical genomics is the level of forced classification of variants
of uncertain significance (VUS); this generates a statistically significant proportion of the
results reported to patients. Databases such as ClinVar, CIViC, and OncoKB exist to curate the
pathogenicity and therapeutic actionability of medically salient results however the
classification process remains subjective and ad hoc. Ensemble Al models like REVEL and

PathoMAN are being trained on large scale annotations to help with automated classification
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of VUS and to streamline classification based on functional, structural, and evolutionary
indications [23]. VUSs remain a barrier to clinical adoption. Proteome-wide predictors such as
AlphaMissense and PrimateAI-3D provide scalable computational scoring of missense variants
[24], [25]. Experimental multiplexed assays-including saturation genome editing-can classify
thousands of variants in parallel, providing empirical benchmarks [26]. A combined workflow
where computational predictors triage variants and multiplex assays confirm high-priority
genes can accelerate reclassification in BRCA1/2 and other actionable cancer predisposition
genes. Interpretation bottlenecks also limit tumour board scalability. The Computer Science
and Artificial Intelligence Laboratory (CSAIL) at MIT and Big Data Institute at Oxford are
developing Al models to automate variant classification, prioritise targets, and predict response
with multi-modal inputs. These products will be integrated into molecular tumour boards and

the decision support interface.

2.4 Emerging Technologies: Single-Cell and Spatial Multi-Omics

Cancer is spatially and temporally heterogeneous. Single-cell RNA sequencing (scRNA-seq)
allowed the identification of rare subpopulations (e.g., drug-tolerant persisters) and lineage
trajectories as they transition through epithelial-mesenchymal transition (EMT) states here at
the Broad Institute [27]. Spatial transcriptomics platforms like Slide-seq and 10x Genomics
Visium are mapping the architectural relationships between cancer cells, stroma, and immune
infiltrates. At Cambridge, spatial multi-omics applied in colorectal and glioblastoma have
found immune exclusion zones and hypoxic niches that correlated with resistance [28]. The
concepts of barcoded nanoparticles applied to in vivo multiplexed drug screening at MIT afford
opportunities to perform functional phenotyping in the native microenvironment. These
technologies will inform patient stratification and trials [29]. Recent developments in the field
of artificial intelligence (AI) have included the scVI (single-cell variability inference) and
DeepCell, which model integrated datasets that consist of spatial transcriptomics data, digital
pathology, and single-cell epigenomics. These models can show how gene expression changes
over time, how cells interact with each other, and how spatial architectures work. They are a
new type of tool for dividing trials into groups based on the topologies and microenvironmental

status of the tumors.
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3. Translating Genomic Insight into Clinical Trial Design

Adding genomic data to the structure of cancer clinical trials is a huge step forward in the
development of new drugs. Historically, oncology trials worked primarily off of a histology-
based stratification framework, which required the tumour to be of a particular type and stage,
and did not account for the underlying molecular heterogeneity that is responsible for
therapeutic response. Precision oncology trials do employ genomic biomarkers-mutational
signatures, gene fusions, transcriptomic profiles-to assign patients to the therapies that are most

likely to be successful.

3.1 From Histology-Based to Biomarker-Driven Trials

Histology-agnostic trial designs harmonize with the molecular complexity of cancer with
patents quite broadly based on actionable mutations without restrictions based on the tumour
type (basket trials, such as NCI-MATCH and ASCO TAPUR trials, the Dana-Farber Cancer
Institute (Harvard pioneered) basket trials combine patients diagnosed with multiple type of
cancer in which there is a shared actionable mutation [8], [30]. Basket trials are meant to
alleviated the limitations of single-histology, as oncogenic drivers can cross tissue origin which
might allow for wider eligibility and faster accrual. Umbrella trials (in the same vein) like
Lung-MAP assigned patients who had the same tissue diagnosis (and were often met with the
same treatment approach, e.g. NSCLC) through different arms based their mutation profiles
[31]. The nature of these trials can highlight one of certain heterogeneity through a single tumor
type, while accommodating a platform approach for rapid evaluation of multiple targeted
therapies within a shared enrollment infrastructure. Many trials have introduced adaptive trial
features (e.g. Bayesian arm expansion) and pre-specified interim analysis which allows for
early stopping for futility or success. Adaptive approaches bring an efficiency to resource
utilisation. Oxford's FOCUSA4 trial in colorectal cancer is one of the first adaptive trials with
genomic stratification and treatment arms that could be opened, or closed, based on interim
data [32]. In a similar way, Cambridge and UCL's TRACERX lung cancer study tracks clonal
evolution over time while also incorporating longitudinal genomics to guide treatment
adaptation [12]. These types of trials have made real-time sequencing, adaptive randomisation,
and interim futility analysis pillars of contemporary, and modern trial designs. Additionally,
hybrid trial designs that enable incorporation of additional layers of data such as epigenetic

profiles, immune landscapes, spatial transcriptomics, are being employed to allow for multi-
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modal stratification. DeepTrial (Stanford), for example, collects these data streams, together
with Al, to dynamically recommend treatment arms and stratification logic, framed against

real-time patient-specific features [33].

3.2 Real-Time Sequencing and Dynamic Eligibility

Quick turnaround in NGS profiling must be a prerequisite to eligibility of biomarkers. The
MatchMiner platform built at DFCI integrates patient genomic information with publicly
available clinical trial protocols to allow Al algorithms to identify potential matches during a
real time search process [34]. This method has shown success in achieving higher enrolment
efficiencies, and curtailing the lag time between molecular diagnosis and trial initiation.
Genomic data pipelines from Genomics England connected to NHS records in Oxford and
Cambridge will allow matched patients to be identified, as soon as actionable alterations are
detected. Cohorts such as these benefit from being integrated using data standards like GA4GH
(Global Alliance for Genomics and Health) so that trial sites can communicate with each other.
Profiling is also being aided by the availability of liquid biopsy tests which allow for the
detection of ctDNA mutations in the real-time context of patient treatment. Liquid biopsies
facilitate on-treatment monitoring and ,in some instances, real-time treatment switching [35].
Clinical trials such as DYNAMIC (Designation of cANcer through Diagnostic Imaging) in
colorectal cancer, and the B-FIRST trial in non-small cell lung cancer (NSCLC) are now
utilising these methods of real-time stratification and treatment direction [36], [37]. For
example, acquired EGFR T790M mutation patients could be switched to osimertinib arms mid-
treatment when the mutation is diagnosed via ctDNA, allowing precision therapy to develop in
parallel with tumour biology. This is an example of "real-time eligibility," whereby eligibility

criteria are variable and governed by the molecular status of the tumour over time.

3.3 Overcoming Barriers: Equity, Interpretation, and Scalability

There remain challenges, however, despite relative technical successes. Limited access remains
as over-representation of ethnic minority and rural populations limits generalisability [5]. This
is exacerbated by issues regarding access to sequencing infrastructure and those institutions
conducting the trial research These institutions, such as Harvard and MIT, are piloting mobile
phlebotomy units and digital consent processes to decentralise the recruitment process and

potentially eliminate geographic and socioeconomic impediments. The GenOMICC project in
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Oxford also represents an example of strive to include different ancestries to include severe
cancer phenotypes and give examples of inclusive trial design. Furthermore, linkage through
with biobank initiatives (eg, UK Biobank and All of Us Research Program) provide an

opportunity to perform retrospective genomic profiling that relates to outcomes data.

3.4 Future Directions: AI-Driven Master Protocols

The future of precision oncology trials lies within algorithmically-enhanced, tumor-agnostic,
and continuously adaptive master protocols that can account for the complexities associated
with cancer biology and the continued influx of new molecular information. Master protocols
established through the Precision Cancer Consortium (Harvard-affiliated) and the WISDOM
trial framework are being pilot-tested to enable modular arm reconfiguration, continuous
enrollment, and adaptive cohorting based on newly available biomarker or response to
treatment data. The DARPA-enabled Intelligent Trial Design program at MIT is constructing
self-optimizing systems to aid in the allocation of patients across the arms, leveraging omics
data, patient clinical trajectories, and patient-reported outcomes [37]. These frameworks
involve reinforcement learning and Bayesian optimization and help provide knowledge from
prior arms to inform the structure of subsequent trials in real time [38]. The contributions of
Oxford and Cambridge to the PAN-COVID cancer study has also informed frameworks for
real-world trial extensions, where we are able to make adaptive changes to standard-of-care
pathways without compromising scientific rigor. However, simultaneously, scientists and
organizations implement federated learning approaches to train Al models without transferring
patient data between hospitals. This helps ensure patient data privacy and overcomes obstacles
in establishing collaborations between institutions, which makes it difficult for them to work
together [38]. These developments make the integration of adaptive trials in the hospital
treatment paradigm possible, with faster validation and support for more patient numbers.
Apart from enhancing success rates and timelines pertaining to the validation of adaptive trials,
such trials also allow, along with other factors, every person, including patients, to benefit from
trials with reduced variation in availability, making patient satisfaction one of the design
elements. The convergence of insights from genes, Al, and adaptive trials is revolutionizing the
practice of clinical trials, making way for the realization of the full potential of precision

oncology.
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4. Al, Data Integration, and the Future of Precision Trial Design

There have been major breakthroughs in the past few decades in the field of medicine, thanks
to scientific-technology development, also known as precision medicine. This branch of
medicine is also revolutionizing diagnostic, treatment, and patient tracking approaches by
integrating with artificial intelligence (Al) in the diagnosis of chronic and complex diseases
accurately [39]. One such disease is cancer. This disease is complex, diverse, and also very
causal in terms of morbidity and mortality globally [40], [41]. Moreover, this disease also varies
significantly from person to person in terms of type, stage, and response to treatment [42].
Since this diversity exists, treatment cannot be standardized. Due to such diversity, treatment
of such diseases has been difficult even for doctors ever since [40]. However, Al integration in
such diseases has eased quite a few difficulties significantly [43]. Within the past 32 years, the
mortality rate from such diseases has decreased by 33%. Advanced science in such diseases,
especially the evolution of precision medicine in such diseases, has been the cause of such
improvement in such diseases. Advanced science in such diseases has, in fact, progressed in
terms of more effective treatment and more specific patient treatment by integrating with Al.
Al helps in detecting hidden patterns in images, estimating the possible advancement of
diseases, proposing treatments, and identifying whether the patient is eligible enough to enroll
in clinical trials or not [44]. Indeed, in 2021, 71 Al-enabled devices were approved by the FDA.
Moreover, more than 80% of such devices were used in the diagnosis of cancers. These devices
were mostly utilized in radiology, pathology, and radiation oncology in cancers, especially solid
cancers such as cancers in the breasts, lungs, and prostate [42], [44]. Even though such devices
have been significantly utilized in terms of accuracy improvement in decision-making, their
complete usage due to irregularities in such devices, even in their usage, has been impeded due
to possible bias in algorithms along with their limitations in terms of efficiency in estimations,

along with higher burdens on such healthcare systems [44].

4.1 Al in Patient Stratification and Trial Matching

One of the most influential applications of Al in precision oncology is in stratifying patients
eligible for clinical trials, based on their genomic, image, and clinical information. The
complexity associated with cancer, both intra- and inter-tumoral, makes conventional patient

stratification in clinical trials notoriously difficult, typically causing the exclusion of patients
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with unique profiles. Al helps overcome this hurdle by identifying hidden patterns in high-
dimensional data, making patient stratification more accurate and inclusive [45], [46], [47].
The DeepPatient model, with data from more than 700,000 electronic health records,
demonstrated the ability of unsupervised learning to identify patient properties and disease
patterns in patient cohorts [48]. DeepMatch at Memorial Sloan Kettering Cancer Center
evaluates genetic and clinical characteristics in real-time to accurately match patients to
ongoing studies. Furthermore, Al-driven instruments used in the I-PREDICT study produced
"matching scores" derived from integrated multi-omics and biomarker data, facilitating
treatment selection and associated with enhanced progression-free survival [49]. Radiomic
features fall into four IBSI-standardized classes: (i) shape/morphology; (ii) first-order intensity;
(ii1) texture (GLCM, GLRLM, GLSZM, NGTDM); and (iv) filtered/wavelet features. To
minimize compute and redundancy, features are filtered for reproducibility, highly correlated
variables are removed (e.g., [r[>0.9), and embedded selection methods such as LASSO or
mRMR are applied. Cross-validation determines the smallest performant set, enabling efficient
and generalizable modelling [50], [51].

Figure 1 below illustrates the clinical challenge: the complexity of radiomic data increases with

metastatic disease, requiring standardized Al-driven pipelines for effective trial stratification.
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Figure 1: Comparison of radiomic analysis pipelines in single lesion and metastatic disease
(reused from T. Henry et al, This is an open access article distributed under the terms of

the Creative Commons CC BY license, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited [47].

4.2 Al-Powered Protocol Design and Adaptive Learning Systems

The inflexibility of conventional clinical trial methods restricts their capacity to adjust to
changing patient reactions and new biomarker discoveries. By facilitating the creation of real-
time, adaptive trial methods, Al gets around this restriction. One example of this innovation is
Trial Pathfinder, which simulated and optimized trial eligibility criteria using real-world data
from more than 61,000 cancer patients. This system demonstrated how Al-designed procedures
enhanced trial effectiveness and survival rates [52]. Bayesian adaptive designs are also
supported by Al, which modifies dose levels and patient randomization in response to interim
results. For example, Al was used to dynamically allocate patients with breast cancer to
neoadjuvant therapy in the [-SPY2 trial, which greatly increased trial response [53]. Dose
escalation, cohort selection, and adaptive halting are just a few of the trial flow optimization
techniques being used by reinforcement learning, a subfield of machine learning in which
computers learn by trial and error [54]. The following examples demonstrate the use of adaptive

protocols in precision oncology, and they are included in Table 1.

Table 1: Innovative Trial Designs in Precision Oncology

Trial Type / | Key Features Benefits Limitations
Study

N-of-1 Trials | Personalized treatment for each | Tailored therapy for | No standard comparator;
patient based on molecular | complex, heterogeneous | complex data analysis;
profile. Comparisons made to | tumors. treatment variability

historical/real-world data. between patients.

I-PREDICT Multidisciplinary  trial ~ using | Higher matching score : | Complex logistics; requires
tumor profiling, ctDNA, PD-L1, | better disease control, | multidisciplinary
TMB, MSI to create a matching | PFS, OS. coordination and deep

score guiding combo therapy. molecular insights.

WINTHER Patients matched to therapy via | RNA and DNA profiling | Did not meet primary
Trial genomics (Arm A) or | help improve treatment | endpoint; requires large-

transcriptomics (Arm B). PFS2 | matching.
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compared to PFS1 (Von Hoff scale profiling
model). infrastructure.

Home-Based

Trials

Patients receive treatment and
monitoring at home. Uses digital

health tools and mobile nurses.

Increases access and
recruitment, esp. in
remote areas; reduces

burden on infrastructure.

Challenges in monitoring

adverse events and
treatment response in real

time.

Alpha-T Trial
(Home-

Based)

Evaluates alectinib in rare ALK+
solid tumors via a phase II, tissue-
agnostic, single-arm home-based

design.

Reaches ultra-rare cancer
populations;  improves

trial inclusivity.

Still in progress; results
pending; logistical
coordination with mobile

care needed.

Just-in-Time

Activation

Sites activated rapidly once a

matching patient is found. Useful

Speeds up trial access for

rarc cascs.

Site setup delays still

possible; early patient

for rare genotypes. identification not always

feasible.

4.3 Integration of Multimodal Data: From Genomics to Real-World Evidence

The current era of precision oncology also calls for the convergence of multi-modal data,
including genomics, transcriptomics, proteomics, imaging, digital health data, and patient-
reported outcomes, to personalize clinical trial design and treatment approaches. Figure 2
represents the paradigm of personalized medicine, in which treatment approaches are informed
by genetic, environment, and behavioral factors [55]. The convergence of multiple layers of
information is paving the way for the shift from disease-centric to mutation-centric clinical trial
design. Al-driven solutions such as MOGONET and DeepOmix demonstrate the utility of the
convergence of multi-omic information with the application of graph neuronal networks and
deep learning approaches to classify subtypes of diseases, predict response, and stratify patients
[56]. Basket, umbrella, and platform trials (Table 2) in clinical trials intend to demonstrate the
application of convergence in practice, in which Al promotes real-time patient matching and
adaptive arm switching. Moreover, real-world data sources such as electronic health record
platforms, wearables, and health registries (Table 3) also provide insights with higher accuracy
compared to current clinical trial cohorts. Al-driven multimodal approaches also facilitate the
application of real-world data in regulatory settings (RWE) to support new approved drugs and
post-market surveillance [57]. However, there remain certain limitations, including the need to

achieve data standardization, Al model interpretability, preservation, and data exchange in
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multiple institutions, which need to be overcome in achieving the application of multimodal

Al in clinical trials.

l Data collection and analysis
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and lifestyle variables (designed for this review).

Table 2: Data-Driven Trial Designs in Precision Oncology.

Trial Definition Representative Key Features Challenges
Design Trials
Basket Test a targeted therapy | -KEYNOTE -Tumor- -Tumor
Trials for a specific mutation | (Pembrolizumab) agnostic heterogeneity.
across different tumor ) i
-LOXO-TRK, -Gene-specific -Resistance
types
P NAVIGATE mechanisms
-FDA approvals
(Larotrectinib, .
for MSI-H, | -Rare mutations
Entrectinib)
TMB-H, NTRK
fusions
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Umbrella | Test multiple therapies | - Lung-MAP | -Single -Biomarker assay
Trials in one tumor type based | (NSCLC) histology - | complexity
on different biomarkers Multi-arm,
- ALCHEMIST -Low efficacy for
biomarker-

some matches
-I-SPY?2 (breast) driven

—plasmaMATCH Molecular -Rare Subgroups

stratification
Platform | Evaluate multiple | -IMPACT1 & 2 -Adaptive arms | -Complex
Trials hypotheses/therapies _TAPUR (add/drop based | logistics/statistics -
under one protocol with on results) Long follow-up
adaptive design NCLMATER -Across -Cost and
-STAMPEDE multiple tumor | heterogeneity
_DART types or one | management
type
-Real-world
integration
Table 3: Novel Mechanisms of Data Collection
Mechanism Description Benefits Challenges/
Limitations
Exceptional Analyze rare patients with | Identify strong | Small sample size,
Responders unusually strong responses | predictive biomarkers, | limited data
to treatment using | understand drug | harmonization,
comprehensive tumor | mechanisms, reduce trial | difficulty linking
sequencing to identify | size and cost. clinical features to
predictive mutations. outcomes.
Registry Use structured clinical | Provide real-world | Data may lack clinical
Protocols registries with | insights, reduce trial | precision, hard to
demographic, treatment, | cost, allow broad | collect and analyze
and biologic data across | evaluation of  drug | timely data, less
large populations. effectiveness. controlled than RCTs.



https://doi.org/10.x/journal.x.x.x

2025, Vol. 2

Cite as: doi:10.x/journal.x.x.x

‘\
%’ SCIFINITI

PUBLISHING

Real-World Data from EHRs, digital | Include Documentation errors,
Data (RWD) apps, insurance claims, or | underrepresented data heterogeneity,
observational databases | populations, accelerate | difficult standardization
used to assess drug safety | approvals, broader | and interpretation.
and effectiveness outside | safety/efficacy
clinical trials. assessment.
Patient- Data directly from patients | Enhance symptom | Expensive to
Reported via platforms/apps about | control, improve | implement, digital
Outcome symptoms, side effects, and | survival, reduce ER | literacy issues, less
Measures quality of life during trials. | visits, increase quality of | precise self-reporting,
(PROMs) care. rarely accepted by
regulators.

4.4 Ethical, Regulatory, and Operational Challenges

Although Al presents immense transformative potential in the design of precision oncology
trials, the successful implementation of Al is dependent on overcoming certain ethical,
regulatory, and operational obstacles. These issues arise due to the complexities in the
application of Al in the health care systems, along with the nature of the data.

A. Ethical Challenges: Bias, Explainability, and Informed Consent

Algorithmic bias ranks among the most pressing issues in relation to ethics, inasmuch as Al
models rely on homogenous and/or incomplete data, causing inequitable outcomes. For
example, ethnic minorities' data incompleteness might result in suboptimal recommendations
or ineligibility for trials [58]. Moreover, “most successful AI models rely on ‘black box’
methodologies, which makes tracking predictions even more complex for clinicians and
patients” [59]. This matters in terms of understanding clinical perceptions and informed
consent in cases when Al models partake in trials and treatment. Emerging alternatives to Al
models, termed Explainable Al (XAI) and continuous consent models with digital platforms,
have been proposed with the goal of producing interpretable results while sustaining
performance capacity, though their application remains to be seen [59]. Al models in clinical
trials require transparency. On the one hand, feature weights in embedded models might be

interpreted. However, complex models such as deep learning require post-hoc solutions such
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as SHAP, LIME, and permutation importances. On the other, actions taken by Al models might
be clarified in terms of what change in input might cause an altered outcome in classification.
Explanations must then be tracked in the clinical environment to ascertain they meet trial
thresholds in terms of triage, fairness, and drift [60], [61].

B. Regulatory Challenges: Lack of Standard Frameworks

There exists an evolving landscape related to the application of Al in designing clinical trials
and developing medical devices. Although the FDA has provided a proposed regulatory
approach to A/ML in Software as a Medical Device (SaMD) guidance, it is being further
shaped [62]. The European Medicines Agency (EMA) released its first draft of the guideline
related to the usage of Al in the life cycle of medicinal products in 2023. The need for human
involvement, model validation, and transparency was reinforced in the guideline [63]. Until
globally harmonized rules and standards, the responsibility is upon the sponsor & investigators
to comply with Al in clinical trials.

C. Operational Challenges: Data Sharing, Interoperability, and Deployment

Al systems require access to high-quality, multimodal datasets, yet data is frequently siloed
across institutions due to legal, technical, or competitive barriers. Initiatives such as Swarm
Learning and federated learning offer privacy-preserving solutions by enabling model training
without centralized data sharing [64]. In addition, the lack of interoperability between hospital
systems and trial platforms hinders smooth integration of Al tools. Standardizing data formats
(HL7 FHIR), developing unified ontologies, and employing middleware APIs are necessary
steps. Finally, Al tools require ongoing calibration and validation to ensure consistent
performance across populations and over time-a process still absent in most trial infrastructure
today. Addressing these ethical, regulatory, and operational challenges is vital to safely, fairly,

and efficiently deploy Al technologies in oncology trials.

4.5 Toward a New Paradigm: Smart Trials for a Complex Era

The intersection of artificial intelligence, multi-omics data, digital health platforms, and
decentralized clinical trial infrastructure is revolutionizing the future of clinical trials. This
represents the dawn of a new age-SMART Trials, which stand for Smart Trials: Digital Trials,
Adaptive, Intelligent, responsive to patient sub-populations, response variables, biomarkers,
and even environmental/behavioral factors. While randomized controlled trials (RCTs) remain

the hallmark of clinical trials, SMART Trials incorporate real-time analytics, federated data
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infrastructures, and wearables to enhance flexibility, diversity, and efficiency. These trials adapt
not only to patient sub-populations, but also to evolving clinical data, emerging biomarkers,
and even environmental and behavioral factors. One fundamental innovative concept driving
the change in clinical trials is the concept of DIGITAL TWINS. Digital twins refer to
computational models of patients/cohorts, which forecast disease evolution, treatment
response, and treatment risk, with data input parameters specific to the patient/cohorts. Digital
twins facilitate the optimization of protocol limbs, pre-trial forecasts, and prospective analysis
of treatments in clinical trials, entirely without any risk to patient safety [65]. Another
innovative paradigm emerging in the clinical trials environment is FEDERATED LEARNING.
This refers to machine learning in decentralized infrastructures, without the movement and
storage of patient data, accumulated in central databases. Thus, continuous learning with
collaborations between multiple data points in trials situated in territories globally, with
preservation of patient privacy, becomes possible [64]. Moreover, mobile health solutions, such
as sensors, eConsent solutions, and Al-enabled symptom reporting apps, reduce the burden on

patients, including in resource-impoverished settings.

5. Institutional Case Studies in Translational Precision Oncology

Even if precision oncology were a global affair, the history of precision oncology has been
shaped in ways that have been disproportionately led by certain institutions, such as Harvard
University, the Massachusetts Institute of Technology (MIT), Oxford University, and
Cambridge University. These play the role of hubs of innovation, not just in terms of advancing
our understanding of the genome, but also in terms of developing clinical, computational, and

ethical frameworks with which we redefine the practice of cancer science.

5.1 Harvard University and Dana-Farber Cancer Institute

Harvard's matrix of exemplary hospitals and research institutions, including Dana-Farber
Cancer Institute (DFCI), Brigham and Women's Hospital, and Massachusetts General Hospital,
is interwoven with translational oncology. These institutions are the co-leaders of the Profile
Project, one of the world's largest institutional clinical sequencing initiatives. The project has
generated data on more than 35,000 cancer patients and established mutation prevalence

benchmarks across various tumor types [66]. Harvard also leads NCI-MATCH, which is a
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tumor-agnostic trial that matches patients to targeted therapies based on next-generation
sequencing (NGS)-based molecular alterations and promising therapy in tumor agnostic
indications. This set the stage to create the biomarker-first stratification frameworks that are
now used worldwide. Further, the creation of MatchMiner, an open-source artificial
intelligence-enabled clinical trial matching platform, is driving trial enrolment and increasing
equity of access [8]. In addition, Harvard works with Flatiron Health, Tempus, and Foundation
Medicine to integrate real world evidence (RWE) into prospective trial planning. This
partnership produces regulatory-grade observational analyses, which are now accepted by the
FDA as acceptable supportive evidence for label expansions and drug repurposing decisions
[67]. Moreover, tumor boards that are affiliated with Harvard increasingly rely upon multi-
omic dashboards that are enabled by explainable AI. This allows oncologists to use
transcriptomics, radiomics, and proteomics in additive ways to inform real-time treatment

decisions.

5.2 Massachusetts Institute of Technology (MIT)

MIT's unique potential resides in their integrated take on engineering, Al, and biomedical
science. For example, the Koch Institute was responsible for a number of advancements
including tumour-targeted nanoparticles, programmable drug delivery, and synthetic biology
diagnostics; They are even in the preclinical stage for potential early diagnosis and stratification

of trials technologies, such as CRISPR-Cas sensors for detecting circulating tumour DNA [64].

The Jameel Clinic (referred to as J-Clinic) collaborates with graph neural networks (GNN5s)
and deep reinforcement learning to provide models of virtual patients, design adaptive trials,
and predict adverse event risks before the patient receives treatment [12], [23]. These
technologies also allow optimising the dose schedule, mitigate the risk of dropping out of a
study after randomisation and predict drugs's potentially synergistic interactions. With support
from the FDA Oncology Center of Excellence, MIT's digital twin program gives researchers
the ability to conduct in silico clinical trials. This approach decreases the likelihood of
amending research protocols and reduces the time spent in regulatory review. Their recent work
using digital pathology, patient-reported outcomes, as well as, calibrating twins with time-

series imaging, such as [65].
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5.3 University of Oxford

Oxford's leadership in genomic infrastructure, data governance, and machine learning is
encompassed in a portfolio of institutes e.g. Big Data Institute, Wellcome Centre for Human
Genetics and Department of Oncology. Oxford is co-leading the 100,000 Genomes Project,
where it has innovated somatic variant detection, structural variation and clinical grade
reporting pipelines [68], [22]. In addition, its contribution to the GenOMICC study has allowed
precision genomics to be applied to cases of rare, aggressive and treatment resistant cancers,
especially ones that affect minority ethnic populations [22]. Its involvement in FOCUS4 - a
genomically stratified adaptive trial in colorectal cancer highlights Oxford's capacity to explore
and bring to the regulatory grade translational research. Further, Oxford's work in PAN-
COVID has provided definitions of care models for cancer patients during pandemic scenarios
and impacted practice and policy at all levels of the NHS. Ethics and regulation is central to
Oxford's purpose. Oxford has collaborated with MHRA, EMA and GA4GH to shape draft
guidance for Al explainability, data portability and model monitoring when genomics is applied

in clinical care.

5.4 University of Cambridge

The Cambridge site combines discovery-level biology with implementation-level clinical
translation, and has strong backing from the CRUK Cambridge Institute, CRUK RadNet, and
Cambridge University Hospitals NHS Foundation Trust. The site is a founding site of the
TRACERX study, which performs longitudinal ctDNA profiling, single-cell sequencing, and
multiregional biopsies to visualize clonal dynamics in individuals with early-stage NSCLC
Cambridge has provided data using liquid biopsy endpoints to create adaptive cohorts in the
neoadjuvant and post-operative context [69]. The RadNet programme develops and tests
innovations in radiogenomics, spatial transcriptomics, and immune landscape characterizations
to understand the predictors of radioresistance. Cambridge is also validating the use of
exosomal RNA and fragmentomics as a surrogate trial endpoint through the CAPTURE and
SIGNATURE studies, technologies that are being adopted as part of pan-European biomarker
consortia [70]. Cambridge is also at the forefront of Al-powered clinical platforms. Its ongoing
work on automated tumor boards, which merges imaging, histopathology, and genomics via
multimodal neural networks is undergoing evaluation by ESMO and the UK NHS Cancer

Alliances for potential deployment nationally [30]. Beyond the academic contributions, the
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active partnership with AstraZeneca, Illumina, and GRAIL on the Cambridge Biomedical
Campus is contributing towards breaking down the wall between discovery and

implementation science, and enabling only-then-phased first-in-human trials.

5.5 Synthesis

Every institution offers something translatable to our shared mission of scalable, equitable, and
ethically responsible translational oncology in unique ways - Harvard with its Al-powered
clinical systems, MIT has programmable Al and digital twins, Oxford has federated data
governance, and Cambridge has multi-modal discovery and implementation of biomarkers.
Together these institutions demonstrate a 'living' blueprint of how academic, clinical, and
regulatory institutions can co-evolve together to provide radically personalised cancer care at

unprecedented scale.

6. Future Perspectives

The evolution of precision oncology is no longer aspirational but now operational. As shown
through institutional case studies and the technological pathways we have mapped, genomics,
Al, and the innovation of trials are radically changing how we understand and treat cancer.
However, for the change to be equitable, scalable, and sustainable, we must achieve
advancement synchronously across three converging dimensions: the scientific infrastructure,

regulatory capacity, and political alignment.

6.1 Technological and Scientific Horizons

Future trials will establish liquid biopsies in real time, utilize digital twins, and, with the
growing power of multi-omics approaches and Al-based protocol updating, will utilize
synthetic control arms instead of traditional comparators which offer both increased efficiency
as well as greater ethical concordance [71]. With the ever-increasing portrayal of spatial omics,
quantum inspired algorithms and long-read sequencing will offer greater dimension into
tumour microenvironments, immune niches and rare subclonal populations [72].
Interoperability will depend on platforms in the cloud, and the utilization of federated learning
which as I discussed above will require compliance with global data standards (e.g. HL7 FHIR,
GA4GH, ISO/IEC 27001). Recent progress in medical Al has emphasized parameter-efficient
learning and vision—language integration. Qin et al. demonstrated that “frozen-backbone”

adapters can preserve prior medical knowledge while cutting trainable parameters by more than
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90%, enabling robust transfer across domains [73]. Liu et al. developed a Global-to-Dense
(G2D) radiography pre-training framework, combining global context with dense feature
prediction to improve fine-grained clinical interpretation [74]. These medical Al advances
exemplify scalable strategies that can be adapted to genomics-driven oncology, where efficient

models and multimodal fusion are critical for real-world translation.

6.2 Regulatory Convergence and Global Health Equity

Regulatory bodies will have to shift toward harmonised frameworks for Al diagnostics and
adaptive paths. Initiatives such as the FDA's SaMD Action Plan, EMA's Al Guidance, and the
IMDRF Al Working Group should synchronise to mitigate fragmentation, and facilitate
approvals [75]. Equity means inclusion - inclusion of diverse genomic ancestries and also
inclusion of low- and middle-income countries (LMICs) in trial design and genomic
infrastructure. Programs such as All of Us, GenOMICC, and the African Genome Project offer
ethical paths forward [76].

6.2.1 Equity and dataset representativeness

Under-representation of minority and low-resource populations risks biased predictions and
poor calibration. Remedies include governance mandates for subgroup reporting, privacy-
preserving federated or swarm learning to expand datasets, domain adaptation to correct
imbalance, and community genomics programs that reinvest locally. Journals and regulators

should require subgroup AUC and calibration plots to ensure equitable generalizability [77].

6.3 Political Science, Policy, and the Governance of Innovation

Genomic medicine is, at least in equal parts, a political project as much as it is a scientific
project [78]. Policy frameworks will need to consider [79]:

e data ownership and nationalism

e Al validation across jurisdictions

e collaboration of public-private entities

e confidence in regulatory bodies

The COVID-19 pandemic brought to light issues in global governance that are tenuous at best,
and the urgency applied to new cancer policy should be prioritized similarly given new
pandemic patterns, the vaccine-cancer immunotherapy nexus, and antimicrobial resistance

[80]. The two universities Oxford and Cambridge’s involvement in health diplomacy through
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WHO and UNESCO, and MIT's participation with DARPA in developing translational
pathways, reiterate the new geopolitical role research institutions will have, in the governance
of cancers globally.

Offering “Genomics-Driven Precision Oncology as a Service” creates confidentiality
challenges. Privacy-by-design approaches-federated or swarm learning, secure aggregation,
and standardized data-use agreements-can enable scalability without raw data transfer.
Alignment with the EU Al Act and FDA SaMD guidelines is essential. Deployments should
prioritize sovereign-cloud or on-premises solutions, supported by Data Protection Impact

Assessments (DPIAs) that summarize residual risks and safeguards [81], [82].

6.4 Final Reflections

We are at a critical juncture. Precision oncology is no longer restricted to elite cancer
institutions; it is increasingly accessible at community hospitals, developing countries, and via
virtual platforms. The determination of whether precision oncology is a universal right or only
a distinct privilege will hinge on the integration of science, data, and ethics, bolstered by
inclusive institutions, policy foresight, and civic trust.

7. Discussion and Conclusion

In conclusion, this paper has presented the revolutionary change brought by the junction of
genetic innovation, adaptive trials, and institutional developments in the realm of precision
oncology. At the core, this revolution represents the application of Al, real-world evidence, and
HTS to transform biomarker-based approaches from rigid procedural routines in the realm of
precision oncology. Case studies involving Harvard, MIT, Oxford, and Cambridge universities
represent the science acuity and translational foresight in integrating ‘omics’ data in clinical
routines. However, there persist important hindrances in the path. Rather, the current models
in precision oncology in terms of generalizability persist in facing inequities in patient
enrollment, variant misclassification, and regulatory discordance. These points, specifically,
serve as current limitations. Thus, the need arises to incorporate flexibility in future structuring
in strongly important ethical, regulatory, and policy considerations. There exists possible
benefit in global regulatory structures with inclusive, transparent, and accountable data
infrastructures. Rather, precision oncology, with initiation in theory in select premier
institutions, represents the current practical application in leader institutions in the world,

although one surmises personal conviction in assuming major global promise in resolution.
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This paper presents the innervating role played in inclusive design, ethical, and infrastructural
necessity in concert with scientific advancement. Rather, with proper usage and global
availability, the major promise of emerging innovative frontiers such as Al, liquid biopsy, and
single-cell genomics will be realized. Broadly, the integrity to meet global regulatory
advancement in terms of need, public belief, and productive structuring will serve in major
shaping in the treatment options in cancers in the future. Rather, with convergence of science
in treatment, precision-to-global unanimity represents the major promise in attaining global

recognition in mainstream treatment options in cancers.
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