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Abstract  

The Internet of Things (IoT) and 5G wireless sensor networks (WSNs) have transformed data transmission and inter-

device communication; however, they face persistent routing challenges owing to energy constraints, latency, and 

packet loss. This study proposes an energy-efficient data transfer framework for IoT-based 5G WSNs by integrating a 

deep belief network (DBN) topology with a reinforcement learning (RL)-based clustering mechanism and Mantaray 

Foraging Optimization (MRFO) for multi-objective cluster head (CH) selection (energy, delay, traffic density, and 

distance). Unlike existing approaches, such as deep neural networks (DNNs) and time-temperature-dependent 

forwarding protocols (TTDFP), which focus narrowly on latency or energy efficiency, our hybrid DBN-RL-MRFO 

architecture jointly optimizes routing stability, scalability, and energy consumption. Simulations demonstrate that the 

proposed DBN-RL-MRFO framework reduces energy consumption by 5–10% compared to DNN-based methods and 

improves network lifetime (FND) by 5–15% over the TTDFP, while maintaining near-optimal throughput and latency. 

Although GEEC achieves lower energy use, our method balances energy efficiency with superior throughput (+3–8%) 

and reliability (PDR > 99.5 Statistical and complexity analyses further validate its robustness. This study advances 

reliable routing for IoT applications (smart cities, healthcare, and industrial automation) by balancing the trade-offs 

between critical WSN constraints. 
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1. Introduction 

2G (2nd generation) networks offer wireless 

connections that satisfy user demands for data and 

voice communications. Thanks to 3G technology, 

smartphones can stream movies and other content with 

a limited amount of bandwidth. However, the 

revolutionary 4G Internet upgrade allowed for a 

capacity boost. Furthermore, a significant percentage 

of smartphone users worldwide use them for regular 

chores. Reports indicate that smartphone adoption is 

more widespread globally than the population of the 

United States (1). However, smartphones, which send 

data and video via 3G and 4G connections, are the 

primary source of the large amount of traffic. 

Furthermore, improper smartphone use causes 

congestion and quality-of-service (QoS) problems (2), 

(3). Given the current state of technology, the 

implementation of 5G is imperative because it will 

lead to the development of device-to-device (D2D) 

linkages. With cellular providers launching 5G 

services globally in 2019, 5G technology is rapidly 

becoming the standard for cellular networks (4). 

However, most modern smartphones use 4G networks 

for both data and video transmission. Similar to older 

networks, 5G networks divide their service regions 

into smaller geographical areas known as cells (5). A 

local antenna connects each cell's 5G wireless device 

to the phone network and internet via radio waves. The 

advantage of this 5G network is its increased capacity 

and ability to attain download rates of up to 10 gigabits 

per second (Gbit/s) (6).  

The Internet of Things (IoT) is a rapidly 

emerging 5G networking technology with a plethora 

of potential applications across several human 

endeavors. Internet of Things (IoT) systems use 

Wireless Sensor Networks (WSN), a type of densely 

packed sensing device, to remotely monitor the 

surrounding environment. In the last several decades, 

wireless sensor networks (WSN) have become 

increasingly important in the field of communication 

because of their unique characteristics, such as 

mobility and simplicity of connection. These features 

establish them as well-known networked data conduits 

(7).    

Wireless sensor networks (WSNs) operating in 

real time have considerable difficulty in transmitting 

data in an energy-efficient manner while meeting strict 

schedule and reliability requirements. The main issues 

include minimizing latency in proportion to energy 

use, ensuring reliability without needless 

retransmissions, developing time-synchronized  

Figure 1:5G and Beyond Wireless Sensor Network 

Communication.  

communication protocols, and handling heavy traffic 

while maintaining energy efficiency. Additional 

challenges include mobility, security and scalability. 

As shown in Figure 1, academic researchers are 

investigating AI-based optimization techniques and 

adaptive, cross-layer, and harvesting-aware protocols 

to solve these problems and meet the needs of modern 

real-time WSN systems. 

Consequently, the communication revolution 

encompasses the concurrent operation of several 

traditional wireless networks on the communication 

side of the spectrum. Owing to its higher bandwidth, 

mobile communication often ranks as one of the most 

popular wireless network techniques in the telecom 

sector. The 5G communication protocols facilitate 

data packet transfer in wireless communication (8). 

 A protocol, an assembly of rules, uses a specific 

routing technique to route data packets from the source 

to the destination. Networking protocols already have 

routing rules in place. Wireless communication uses 

multiple layers to implement protocols and transfer 

data across different levels (9). The transport layer in 

mobile wireless communication facilitates data 

transfer by implementing a specific protocol for the 

data delivery. To guarantee effective network resource 

allocation, the transport layer protocol takes advantage 

of a congestion management mechanism. 

Furthermore, congestion management is considered 

the most crucial problem at the transport layer in 

wireless networks. When congestion control is 

implemented in mobile wireless communication, 

including 5G communication, the performance of the 

entire network collapses. We have developed routing 

techniques (10), (11) to avoid this issue. 
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A sensor network requires a routing protocol to 

identify the path from the sender node to the 

destination sink node. Routing techniques in wireless 

sensor networks aim to accurately identify data 

transmission paths to minimize latency and optimize 

energy efficiency (12). Combining the advantages of 

energy efficiency and route-finding techniques yields 

reliable paths. It automatically adapts to network 

density and traffic patterns in data-intensive sensor 

networks (13). Routing protocols handle neighbor 

adoption, route choice, and power management to 

enhance network scalability and flexibility. Certain 

routing techniques prioritize network resilience, hop 

count, and latency optimization over energy economy. 

We chose these steps to enhance the design elements 

of the routing protocol (14). 

Machine learning techniques are a notable way to 

enhance network performance and solve difficult 

decision-making problems (15). The Internet of 

Things (IoT), with its support for Wireless Sensor 

Networks (WSN) and strong machine learning 

algorithms, handles and evaluates complex routing 

and energy management decision-making challenges. 

Learning-based algorithms solve the problem of 

creating the best routing paths with high precision 

(16). Machine learning methods must be used to assess 

constraints, enabling the routing process to 

automatically understand the dynamic aspects of 

networks, including congestion areas, connection 

quality, topology changes, and new flow arrivals. The 

goal of this analysis was to improve service quality. 

Each sensor node (SN) makes decisions based on its 

observation state and decision-making abilities, which 

may lead to intelligent actions. Furthermore, the 

system repeatedly learns and makes decisions until it 

identifies an optimal response (17). Recent 

advancements in 5G technology, including Ultra-

Reliable Low-Latency Communication (URLLC) and 

network slicing, have significantly improved the 

reliability and resource allocation of Internet of Things 

(IoT) networks (18,19). Nevertheless, the emphasis of 

URLLC on achieving ultra-low latency often 

overlooks the aspect of energy efficiency in Wireless 

Sensor Networks (WSNs), while the dynamic resource 

partitioning inherent in network slicing may result in 

overheads for large-scale sensor deployments (20). 

This study addresses these challenges by introducing 

a hybrid Deep Belief Network-Reinforcement 

Learning-Moth Flame Optimization (DBN-RL-

MRFO) framework that concurrently optimizes 

latency, energy consumption, and scalability, which 

are critical requirements for 5G-enabled WSNs in the 

context of smart cities and Industry 4.0. 

The proposed DBN-RL-MRFO framework 

aligns with the 3GPP Release 17 IoT standards (18), 

which emphasize energy-efficient ultra-reliable low-

latency communication (URLLC), particularly for 

industrial IoT applications, and scalability for massive 

machine-type communication (mMTC). Although 

Release 17 specifies reduced-capability (RedCap) 

devices for low-power wireless sensor networks 

(WSNs) (3), it does not prescribe specific methods for 

resource optimization, leaving this aspect open for 

implementation. Our research addresses this gap by 

incorporating the following elements. 

• Reinforcement learning (RL) for adaptive 

clustering, complying with 3GPP’s push for 

AI/ML in RAN intelligence (Release 18) (17). 

• Multi-objective CH selection (energy, latency, 

density), mirroring 3GPP’s QoS prioritization 

for heterogeneous IoT traffic (18). 

The main goal of the recommended routing design is 

as follows:  

• A clustering approach was used to implement 

social network grouping.  

• A unique optimization method for CH selection 

is presented.  

• We propose an effective routing method based 

on machine learning (ML). 

• We calculated and compared the algorithm's 

performance with recently released techniques. 

Main Contributions 

The main contributions of this study are 

summarized as follows: 

• Novel Hybrid Architecture: We propose a 

novel DBN-RL-MRFO framework that 

synergistically combines deep learning, 

reinforcement learning, and bio-inspired 

optimization for holistic WSN optimization, 

moving beyond approaches that focus on a 

single objective.  

• RL-based Clustering Mechanism: We designed 

an RL-based clustering algorithm that 

dynamically groups sensor nodes to minimize 

energy consumption and improve network 

stability, adapting to network changes more 

effectively than static clustering protocols.  

• Multi-Objective CH Selection Model: We 

formulate the CH selection as a multi-objective 

optimization problem (considering energy, 

delay, traffic density, and distance) and employ 

the Manta Ray Foraging Optimization (MRFO) 

algorithm to solve it efficiently.  
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• DBN-based Routing Protocol: We developed a 

Deep Belief Network-based routing protocol 

that intelligently learns optimal data paths, 

enhancing throughput and reliability while 

conserving energy.  

• Comprehensive Performance Validation: We 

provide extensive simulations demonstrating 

that our proposed framework outperforms 

state-of-the-art protocols, such as DNN, 

TTDFP, and GEEC, in terms of network 

lifetime, energy consumption, throughput, and 

latency, and validate its statistical significance 

and complexity. 

The remaining sections are structured as follows: Sec-

tion 2 discusses recent research on routing and cluster-

ing. Section 3 provides further details on the problem 

statement and justification. Section 4 provides a de-

tailed description of each strategy in the proposed 

framework. Finally, Section 6 concludes the paper and 

outlines the future work. Therefore, Section 5 delves 

into the outcomes of the proposed routing protocol and 

its associated factors. 

2. Literature Survey 

2.1. Several recent works that are 

relevant to our proposal 

Researchers have conducted numerous empirical 

studies to enhance the performance of 5G wireless 

communications. Wireless routing systems have 

received considerable attention because of the 

important 5G technological developments. This article 

offers a succinct overview of recent developments in 

routing protocols. 

Thangaramaya (21)developed a routing theory for 

Wireless Sensor Networks (WSNs) in the Internet of 

Things (IoT). Wireless Sensor Networks (WSNs) 

enable data sensing, collection, and transfer among 

devices in the Internet of Things (IoT). The Internet of 

Things has enabled Wireless Sensor Networks (WSN) 

to use intelligent routing to enhance network 

performance. Many recent studies have explored the 

principles of energy-efficient routing have been the 

subject of many recent studies. This study addresses 

the development of a neuro-fuzzy rule for cluster 

formation in IoT-based wireless sensor networks 

(WSNs) to enhance the current approach. However, 

this approach needs to be enhanced for group Wireless 

Sensor Networks (WSN) within an Internet of Things 

(IoT) architecture. Upon careful analysis, we found 

that this routing algorithm provides excellent results 

for various factors, such as PDR, energy consumption, 

latency, and network durability. 

Sujanthi and Kalyani (2017) (22) introduced a 

QoS-aware, safe deep learning method for dynamic 

cluster-based routing in Wireless Sensor Networks 

(WSN) supported by the Internet of Things (IoT). The 

open and resource-constrained nature of WSN-

assisted IoT presents security and energy efficiency as 

challenging issues that must be addressed. This study 

constructs a hybrid WSN-IoT network based on 

dynamic clusters using the Secure Deep Learning 

(SecDL) technique. Furthermore, we specifically 

designed a network using mobile sink technology and 

bicentric hexagons to improve energy efficiency. We 

activated a two-way data elimination and reduction 

framework to manage the consolidation of the data in 

each cluster. One-time-present (OT-present) 

encryption achieves a high degree of security for 

combined data. We transformed the encrypted text into 

a mobile sink using a selected path, thereby verifying 

the outstanding Quality of Service (QoS). We 

developed a crossover-based fitted deep neural 

network (Co-FitDNN) to achieve optimal route 

identification. As we employed IoT users to collect 

sensory data, user security was the primary focus of 

this study. 

Huang (23) reported a deep learning model for 

estimating connection reliability for routing in 

Wireless Sensor Networks (WSN). This paper presents 

a robust routing technique to enhance the routing of 

wireless sensor networks (WSN). The current study 

presents a new deep learning model called the 

Weisfeiler-Lehman kernel and Dual Convolutional 

Neural Network (WL-DCNN) method that works well 

for extracting and labeling sub-graphs. Its goal was to 

improve the outstanding degree of generality of self-

learning flexibility. We created a reliable routing 

model, WL-DCNN, specifically for Wireless Sensor 

Networks (WSN). Resilient routing in Wireless Sensor 

Networks (WSN) measures the reliability of target 

connections by obtaining topological data during 
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assaults on routing tables, which inflict different levels 

of damage on the local link community. 

Ibrahim El-Moghith and Darwish (24) developed 

a deep, trustworthy routing system based on a block 

chain, specifically for wireless sensor networks 

(WSNs). Routing attacks easily breach the core 

functionalities of Wireless Sensor Networks (WSN), 

causing significant harm to the network as a whole. A 

dependable routing technique is required for Wireless 

Sensor Networks (WSN) to function well and 

strengthen routing security. The implementation of 

trust restrictions, centralized decision-making, or 

cryptographic approaches increases the dependability 

of routing systems. This study presents a unique 

method for enhancing routing security and efficiency 

in deep-chain networks: the implementation of 

Markov Decision Processes (MDPs). Within the 

blockchain network, the proposed design uses a proof-

of-authority technique to confirm the legitimacy of the 

information distribution process. We developed a 

unique deep learning method to integrate the distinct 

features of several nodes. We selected the best 

neighboring hop as a forwarding node using multiple 

decision processes (MDPs) to ensure safe and 

effective message delivery. 

Razhavendra and Mahadevaswamy (20) 

presented a composite fuzzy technique (22)for energy-

efficient routing in Wireless Sensor Networks (WSN). 

Optimizing the battery performance of wireless sensor 

networks (WSNs) necessitates careful monitoring of 

energy consumption. The battery of a Wireless Sensor 

Network (WSN) runs out of juice owing to the 

transmission and sampling rates. We devised an 

approach to energy consumption modeling to examine 

important factors influencing the lifetime of a Wireless 

Sensor Network (WSN). The current research 

investigates the role of fuzzy membership functions in 

extending the network lifespan. We adjusted the 

parameters at several levels using advanced fuzzy 

logic methods. This paper describes an effective 

integration of routing and clustering activities using 

the hybrid metaheuristic cluster-based routing 

(HMBCR) technique. We introduced a novel 

approach, Levy distribution-based brainstorm 

optimization (BSO-LD), to enhance the clustering 

efficiency. We then present a water wave optimization 

technique based on hill climbing (WWO-HC) to select 

an optimal route. 

In (26), we implemented algorithmic CH 

selection using a pragmatic methodology that included 

several critical criteria for CH selection. Routing 

traffic via the selected cluster head (CH) will enhance 

performance. After considerable consideration, a 

hybrid optimization technique called genetic-based 

particle swarm optimization (GA-PSO) was developed 

for CH selection and routing. We determined the 

optimal path for sink mobility using Particle Swarm 

Optimization (PSO). Reference (27) describes a new 

method for effective clustering. This is called 

Distributed Autonomous Fashion integrated with 

Fuzzy If-then Rules (IDAF-FIT). The if-then rule 

guided the selection of the CH during the clustering 

process. This approach uses an adaptive source 

location privacy preservation technique called 

randomized routes (ASLPP-RR) to select the optimal 

route. Ultimately, we implemented a security analysis 

procedure to enhance the privacy of sensitive 

information. In addition to cluster-based routing, the 

rate control idea was used in (28), which extended the 

system durability across longer simulation sessions. 

The first step involved grouping the nodes using a 

hybrid K-means and greedy best-first search approach 

to achieve lifetime improvement. We also aimed to 

control the rates by introducing the firefly (FF) 

optimization technique. Ultimately, we employed the 

Ant Colony Optimization (ACO) technique to 

determine the optimal data transmission channel. First 

presented in (29), the routing strategy is based on 

African buffalo optimization (ABO). We studied the 

behavior of African buffalo and used the best route-

selection technique. As the main controller, the ABO 

oversees communication between each node and the 

building systems. It has a long network life and 

effectively sends packets from the source to the sink 

node. 

The multi-criteria decision-making (MCDM) (30) 

technique is the most successful method for making 

decisions. Fuzzy logic was added to the MCDM to 

improve it and overcome its shortcomings. The study 

created a hybrid routing model and a fuzzy-based 

https://doi.org/10.x/journal.x.x.x


2025, Vol. 1, Issue 1 
doi:10.x/journal.x.x.x 

 

 
multiple criteria decision-making (MCDM) system for 

choosing Cluster Heads (CH). We then used the 

generalized intuitionistic fuzzy soft set (GIFSS) 

technique and a hybrid shark smell optimization (SSO) 

to get the best CH selection. A genetic algorithm (GA) 

was used to achieve efficient routing. Ultimately, we 

evaluated a limited set of performance metrics to 

demonstrate the effectiveness of the GIFSS-SSO 

approach. 

Wireless sensor networks (WSN) use a certain 

number of nodes to gather data from the surrounding 

area. However, throughout this process, energy saving 

was the main objective. Routing and clustering 

algorithms are mostly responsible. In this study, we 

present an energy-aware distance-based CH selection 

and routing (EADCR) protocol to enhance the lifetime 

and energy efficiency of nodes in wireless sensor 

networks (WSN). We used a modified form of the 

fitness function throughout the CH selection process 

to minimize the energy consumption (31). This study 

presents a new approach for finding the shortest path 

in routing operations. This method uses the Euclidean 

distance to reduce energy consumption. The network 

lifetime and overall energy efficiency both increased 

with the implementation of this integrated approach. 

Wireless sensor networks (WSN) can perform 

complicated communication using a high number of 

sensor nodes (SNs). However, there are currently 

fewer satellite networks (SNs), resulting in a decline 

in communication and sensing capabilities. It always 

reduces the routing quality of service (QoS) 

performance. To address this issue and improve 

routing efficacy and efficiency, (25) introduced a 

fuzzy-based relay node selection and energy-efficient 

routing (FRNSEER) technique. We used the fuzzy rule 

technique to select the sink node. The active selection 

of a relay node may increase the data transmission 

utility factor and energy efficiency. We positioned a 

highly efficient sensor hub between the relay nodes 

and sink to enhance communication. 

Reference (32) introduced a two-tier distributed 

fuzzy logic-based prototype (TTDFP) to enhance the 

efficiency of multihop wireless sensor networks 

(WSNs). Clustering meets the need to optimize 

aggregation with respect to energy usage. Cluster 

heads (CHs) receive the gathered data in a clustered 

network and then forward the received packets to the 

base station. Hotspots and/or energy hole issues may 

arise when using a multihop topology. The TTDFP 

approach, which is adaptive and dispersed, scales, and 

operates well for use in Wireless Sensor Networks 

(WSN). Moreover, it uses optimization methods to 

modify fuzzy parameters. This technology achieves 

high levels of energy efficiency and network lifespan. 

Researchers have identified clustering as the most 

effective communication platform for wireless sensor 

networks (WSN). Fuzzy methods have recently gained 

popularity as efficient clustering strategies because of 

their high degree of precision. However, it may take 

some time to determine the best choice. Reference (32) 

introduced a clonal selection technique based on rule-

based fuzzy clustering to overcome the drawbacks of 

fuzzy algorithms. Compared with other fuzzy-based 

techniques, CLONALG-M exhibited better 

performance. This technique is based on the idea of 

clonal selection, which has the adaptive immune 

system at its core. We used the immune system 

concept to predict the deployment of outputs based on 

the membership function, thereby improving the 

overall performance. Extensive research has shown 

that this algorithm outperforms other approaches. 

This implementation (33) provides a concise 

discussion of the design challenges associated with 

URLLC use cases, offering an overview of the 

available technological components from 3GPP Rel-

15 and potential advancements from Rel-16. In 

addition, coordinated multi-cell resource allocation 

methods are examined. System-level simulation 

results in an urban macro environment indicate that 

effective multi-cell cooperation, particularly through 

soft combining, can substantially increase URLLC 

capacity. (19) delineates Intelligent Intent-Based 

Network Slicing (I-IBNS) systems as exemplars of the 

integration of intelligent Intent-Based Networking 

(IBN) and Network Slicing (NS) for the Management 

and Optimization (MO) of Internet of Things (IoT) 

systems. This study further surveys I-IBNS systems, 

concentrating on two pivotal domains: resource 

management and data management. The resource 

management section scrutinizes recent advancements 
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in IBN mechanisms within the NS framework. The 

data management section investigates the complexities 

inherent in IoT networks. Additionally, this study 

envisions the roles of intent, NS, and the IoT 

ecosystem, thereby establishing a foundation for 

prospective research directions. 

Although (34) employs URLLC to ensure latency 

guarantees, it overlooks the multi-objective trade-offs 

between energy and delay. Similarly, (35) utilizes 

network slicing but requires centralized control, 

thereby constraining scalability. Our DBN-RL-MRFO 

approach decentralizes decision-making, which is 

consistent with 5G's emphasis on edge intelligence. 

Table 1. Quantitative evaluation of many cutting-

edge algorithms for Wireless Sensor Networks 

(WSN). 

Index Benefits Drawbacks 

(21) 

Data transfer 

reliability 

The structure of 

social networks 

allows optimization. 

Specific to social 

network 

optimization 

Restricted 

evaluation of the 

performance. 

(22) 

Uplink data transfer 

optimization 

Advanced computers 

are used to enhance 

efficiency. 

The downlink 

requirements were 

disregarded. 

The assessment of 

scalability is 

limited. 

(23) 

Optimized energy 

management model 

An effective data 

distribution 

architecture 

Absence of a 

thorough 

execution. The 

experimental 

analysis was 

limited. 

(24) 

We are optimizing 

the trajectory for data 

gathering with the 

assistance of UAVs. 

It reduces the 

inefficiency of data 

acquisition. 

Restricted 

assessment.  

Ignores further 

factors 

 

(25) 

Hole healing process 

and coverage 

optimization 

We incorporated the 

concepts of 

wakefulness and 

sleep. 

Restricted 

assessment. 

This may not be 

relevant in the 

case of dynamic 

node availability. 

(26) 

The data collection 

plan increased 

productivity. 

Modernizing energy 

optimization 

Absence of 

outcomes.  

Restricted 

assessment. 

(28) 

Improving energy 

efficiency; 

Cluster-based hybrid 

optimization is an 

energy-efficient 

technique. 

Real-world 

assessment is 

limited 

The additional 

optimization 

factors were 

ignored. 

(29) 

This includes both 

stationary and 

movable sink nodes. 

The methodology for 

sleep scheduling and 

clustering relies on 

particle swarm 

optimization. 

Strict assessment 

It ignores node 

mobility and 

network 

dynamics. 

(36) 

Increased network 

longevity and energy 

efficiency 

The clustering 

routing protocol is 

based on thermal-

exchange 

optimization. 

Limited real-

world assessment 

Ignores other 

optimization goals 

 

(32) 

Modernizing energy 

optimization 

Effective data routing 

Strict assessment 

in a dynamic 

network 

Ignores additional 

optimization goals 

(33) 

3GPP Rel-15 and 

potential 

advancements from 

Rel-16. 

Restricted 

assessment. 

This may not be 

relevant in the 

case of dynamic 

node availability. 

(19) 

Intelligent Intent-

Based Networking 

(IBN) and Network 

Slicing (NS) for the 

Management 

Limited real-

world assessment 

Ignores other 

optimization goals 

Clustering improves the scalability, 

communication capability, and energy efficiency of 

networks. There are two types of clustering: equal and 

unequal, as well as static and dynamic. In wireless 

sensor networks, hotspots require a large overhead and 

are prone to connectivity issues. The only way to 

overcome these obstacles is through uneven 

clustering. Reference (36) introduced a fuzzy logic 
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method based on zonal division to address the hotspot 

issues. We carried out clustering to decrease the rate of 

energy consumption using fuzzy logic. It performs 

better by reducing energy consumption, increasing 

network longevity, and balancing the loads. Table 1 

lists all existing clustering and routing algorithms that 

employ optimization-based approaches or other 

methods. However, no study has addressed artificial 

intelligence or optimization techniques. To create and 

route clusters, we used deep belief network (DBN) and 

reinforcement learning (RL) approaches. These 

strategies have improved the system's capacity to 

sustain prolonged periods of operation by extending 

the network's overall lifespan. 

3. Identification and Motivation 

of the Problem 

Routing is a critical task that requires close 

supervision in the Internet of Things (IoT) enabled by 

Wireless Sensor Networks (WSNs). Routing refers to 

the process of creating a data transmission connection 

between base stations (BSs) and subnetworks (SNs). 

The data routing strategy distinguishes Wireless 

Sensor Networks (WSNs) from other wireless ad hoc 

networks and existing communication methods, while 

also addressing other problematic issues such as 

energy consumption and short network lifetime. The 

WSN routing process considers three main aspects. 

First, establishing a global addressing process to 

support the deployment of more SNs is not possible. 

Therefore, sensor networks can function without 

traditional IP-based protocols. Furthermore, contrary 

to the tenets of traditional communication networks, 

all sensor network applications require a constant flow 

of sensed data from several sources to a chosen sink 

node or base station. Third, the use of multiple sensors 

near a phenomenon generates a significant amount of 

duplicate traffic throughout the entire network, 

creating the same data. Moreover, this type of 

duplication increases the need for transmission 

bandwidth and energy usage. Moreover, it results in 

several other issues, such as packet loss, delay, and 

bandwidth degradation. This motivated us to devise a 

more straightforward routing method that utilizes 

machine learning techniques. In the future, this 

procedure should be used to make wise decisions 

based on lessons learned from prior experiences. 

4. Methods  

This section provides a comprehensive 

description of the methods employed in this study. We 

begin by outlining the system model and fundamental 

assumptions, followed by the energy-consumption 

model. We then detail the proposed hybrid DBN-RL-

MRFO framework and explain its three core 

components. Finally, we specify the simulation setup, 

performance metrics, and statistical methods used for 

the evaluation.  

4.1. System Model and Assumptions 

We created the WSNs system model based on the 

following assumptions: 

• By nature, secondary and source networks are 

static.  

• CH collect data using a single sink. 

• We divided the SNs into three categories: 

advanced, intermediate, and normal nodes, owing 

to their diversity. 

• The CH collects input from the sensory nodes and 

transmits the information to the sink node. 

• The sink should function as a central node that 

regularly updates itself with information about all 

subnetworks. 

• This approach uses an inter-data communication 

mechanism to accomplish data transfer via CH. 

We refer to the node with 0% battery life as the 

"dead node." 

Figure 2 illustrates the concept of cluster-based 

single-hop communication for the Internet of Things 

(IoT) with assistance from Wireless Sensor Networks 

(WSN). This study uses the concept of machine 

learning (deep neural network) to construct an 

effective route in a 5G wireless communication 

network (WSN-assisted IoT). It is crucial to arrange 

the sensors into node clusters before starting the 

routing process. Clustering techniques are essential to 

achieve energy-efficient transmission, which increases 

network survival rates and reduces energy 

consumption. This study presents a reinforcement 

learning (RL) approach to clustering. The base station 

(BS) or sink node, which performs the clustering 
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function, centrally assigns each sensor network (SN) 

to a specific cluster based on its location.  

 

 

Figure 2. Cluster-based single-hop communication 

in wireless sensor networks (WSN) supports the 

Internet of Things (IoT). 

An optimization approach is used for the selection 

of CHs once the SNs have been assigned to a cluster. 

However, in a hierarchical clustering-based Wireless 

Sensor Network (WSN), the energy use is high 

because of all the processing that is needed to combine 

data and obtain data from each CH member sensor 

node. Therefore, the CH must be carefully selected to 

extend the network lifetime. To choose the CH from a 

cluster, this study presents the Mantaray Foraging 

Optimization (MRFO) technique. Recently, 

researchers have developed this approach as a bio-

inspired optimization strategy to tackle real-world 

engineering problems. Figure 3 depicts the process 

flow of the recommended technique. 

 

 

 

Figure 3. Procedure map for the proposed 

methodology. 

Each cluster must optimize its cluster head (CH) while 

considering various constraints, such as latency, 

energy, traffic density, and distance. Figure 4 shows 

the challenges and risk factors to be considered in 

wireless sensor networks. In sensor networks, finding 

the best route is essential for improving the 

performance of Wireless Sensor Networks’ (WSNs’) 

in dynamically unstable, asymmetric, and shifting 

wireless channels. This covers the latency, throughput, 

energy efficiency, and data integrity. After selecting 

the CH, we recommend implementing a routing 

system that utilizes a Deep Belief Neural Network 

(DBN) for efficient data transit.  

The neural network performs this routing using several 

variables, such as residual energy, distance from the 

cluster head (CH), number of neighboring nodes, and 

connection distance. Consequently, the proposed 

routing algorithm actively learns the communication 

patterns of the nodes to achieve energy-efficient 

routing. 
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Figure 4. WSN applications: Challenges and 

requirements. 

 

4.2. Energy Consumption Model 
This study adapted the radio energy dissipation 

model from a previous study (37). In this setup, the 

receiver powers the radio electronics, whereas the 

transmitter powers the amplifiers and subsequent radio 

electronics. This experimental method uses a 

multipath fading model. The measured distance d 

between the transmitter and receiver exceeds the 

specified threshold. 𝑑2 is the symbol representing the 

loss of energy in free space. In addition, the energy 

dissipation associated with multipath fading is 

represented by 𝑑4. The equation for the energy 

consumption model 𝑃𝑠 during the transmission of the 

𝑘𝑡ℎ bit packet is (1). 

𝑃𝑠 = {
𝑘 ∗  (𝑃𝑒𝑐 + 𝑃𝑓𝑟𝑠 ∗  𝑑𝑖𝑠

2); 𝑑𝑖𝑠 <  𝑑0

(𝑃𝑒𝑐 + 𝑃𝑚𝑝𝑓 ∗  𝑑𝑖𝑠
4) 𝑑𝑖𝑠 ≥  𝑑0

 (1) 

 

Next, the distance between the sender and receiver and 

the allowed bit error rate (BER) to evaluate the multi-

path or free space fading model, which is represented 

as 𝑃𝑓𝑟𝑠 ∗  𝑑𝑖𝑠
2 or 𝑃𝑚𝑝𝑓 ∗  𝑑𝑖𝑠

4. 

The distance between the sender and recipient is 

indicated by variable d. The amount of particular 

energy needed to get the bit over the multi-path fading 

channel and into free-space is called 𝑃𝑓𝑟𝑠 and 𝑃𝑚𝑝𝑓 , 

respectively. The threshold distance determined by 

equation (2) is shown as 𝑑0.  

 

𝑑0 = √
𝑃𝑓𝑟𝑠

𝑃𝑚𝑝𝑓
    (2) 

Equation (3) represents the energy used to 

receive k bits of data packets.  

𝑃𝑟𝑒𝑐 = 𝑘 ∗  𝑃𝑒𝑐     (3) 

 

Equation (4) shows the energy usage by the CH during 

data aggregation. 

𝑃𝑎𝑔𝑔 = 𝑃𝐸𝑎𝑔𝑔 ∗ 𝑘 ∗ 𝑛   (4) 

𝑃𝐸𝑎𝑔𝑔 represents the function, where k is the number 

of bits in the data packet, n is the number of messages, 

and e is the total energy used to aggregate a single bit. 

 

4.3. Proposed DBN-RL-MRFO 

Framework 
Reinforcement learning (RL) is a learning 

method that rewards valuable actions. The 

agent, action, state, reward, policy, value 

function, and environment model are among the 

several essential elements that comprise the 

reinforcement learning process. The 

Reinforcement Learning (RL) method uses a 

Markov decision process (MDP) and includes 

computational modeling, ε-greedy selection, and 

temporal difference methods for choice (38), 

(39). In this study, the nodes of a Wireless 

Sensor Network (WSN) act as learning agents, 

utilizing a reinforcement learning (RL) 

approach to cluster social networks through RL-

based clustering. The learning agents assess the 

energy level of each nearby node for grouping 

based on predetermined rules. We evaluate the 

Markov decision process (MDP) of each node 

before building the clusters. The MDP 

incorporates the status, action, policy, and 

reward. The learning agents determine the 

action strategy using the temporal difference 

technique, considering the network 

environment. Figure 5 illustrates the RL 

approach. Each secondary network incorporates 
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the reinforcement learning concept for 

clustering purposes. It first computes the route 

cost and then sends it to the cluster head based 

on the updated Q-value. 

 

Figure 5 . Reinforcement learning agent-

environment interaction loop (conceptual diagram 

based on Sutton & Barto, 2018). 

This study illustrates the connection cost between the 

current and next-hop nodes by utilizing the reward 

parameter in (38). The fundamental tenets of MDP 

are the set of states (S), reward function (R), set of 

actions (A), and transition function (T). The learning 

agent employs these actions to calculate the energy 

required by each cluster after determining which 

states S display action A. Finally, by analyzing the 

reward R parameter derived from the estimated 

energy usage, a logical conclusion is reached. 

Next, we increment the mentioned states and 

actions to 1 (A to A to Ai+1 (action) and S to Si+1 

(state)). The learning agent develops the best policy, 

Q, which increases the reward parameter based on 

previous learning experiences. The goal of this 

strategy is to offer the most practical solution for CH 

management. A Markov Decision Process (MDP) 

links its present action and state to its reward R and 

state transition T. One of the primary objectives of a 

learning agent is policy creation. 𝑆 → 𝐴 The learning 

agent selects the action Ai after considering the current 

state Si, represented by  𝑆𝑖(i.e (𝑆𝑖) = 𝐴𝑖 ).. equation 

(5) defines the cumulative value function 𝑉𝜋(𝑆𝑖), 

which is established by analyzing the initial state 𝑆𝑖. 

𝑉𝜋(𝑆𝑖) =  𝑟𝑖 + 𝑦𝑟𝑖+1 + 𝑦
2𝑟𝑖+2 +⋯ = 𝑟𝑖 + 𝑦 +

 𝑉𝜋 . (𝑆𝑖+1)  = ∑ 𝑦𝑖∞
𝑖=1 𝑟𝑖+1             (5) 

The objective of the learning agent is to enhance the 

intelligent strategy by increasing the value of 𝑉𝜋(𝑆𝑖). 

The described procedure is often known as a policy 

and is denoted by Equation (6). 

𝑉𝜋 = argmax𝑉𝜋 (𝑆𝑖) 𝑉𝑠             (6) 

Finally, the Q-value is revised using Equation (7). 

𝑄𝑡+1 (𝑆𝑡  , 𝛼𝑡) =  (1 −  𝛼) 𝑄𝑡  (𝑆𝑡  , 𝛼𝑡) +  𝛼 [𝑟
𝑡+1 +

𝑦  max𝑄𝑡  (𝑆𝑡+1 , 𝛼
′) − 𝑄𝑡  (𝑆𝑡  , 𝛼𝑡) ]             (7) 

Using Equation (7), the Q-table is continuously 

updated. Maximal Q-value and return value are 

denoted as  max𝑄𝑡  (𝑆𝑡+1 , 𝛼
′)  and 𝑟𝑡, respectively. 

The action of every learning agent is represented by 

the symbol α'. Approach I is based on Reinforcement 

Learning (RL) for cluster creation. Figure 6 shows the 

flowchart of the RL-based clustering process 

(Algorithm I) to enhance reproducibility. 

Algorithm I: Reinforcement Learning 

based Cluster Generation 

Step 1:  

Establish the environment, the reward system, and the 

learning parameters. 

Step 2:  

The starting state is established, including unclustered 

nodes, using state initialization. 

Step 3:  

Choose your actions for each node based on either 

exploitation or exploration. (S , α), 
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 Figure 6. Flowchart of the RL-based clustering 

process. 

Step 4:  

Calculate Rewards: Assign points according to the 

cluster head distance, communication cost, or energy 

efficiency. Q(S , α) a value of 0. 

Update the table entry Q(S , α) , which is defined as 

follows, using equation (7).  

𝑄𝑡+1 (𝑆𝑡  , 𝛼𝑡) =  (1 −  𝛼) 𝑄𝑡  (𝑆𝑡  , 𝛼𝑡)

+  𝛼 [𝑟𝑡+1

+ 𝑦  max𝑄𝑡  (𝑆𝑡+1 , 𝛼
′)

− 𝑄𝑡  (𝑆𝑡  , 𝛼𝑡) ] 

 S=S` 

Select action 

𝜋 (𝑆𝑖)= arg max αQ(S , α)  

Exploration 

𝑃 (𝛼𝑖|𝑆) = 𝑘𝑄(S , α)

∑ 𝑘𝑄(S , α)
 

 

 Step 5:  

Policy Update: The policy is updated using the reward 

from the action performed. 

Step 6:  

Termination: The procedure is continued until a 

convergence condition is satisfied or an ideal 

clustering pattern is discovered. 

Step 7:  

Return Clustering: Using the learned strategy, the best 

possible cluster structure is output. 

4.4. MRFO algorithm-based cluster 

head selection optimization 

 
We select the appropriate node from the cluster as 

the channel head (CH) by combining the 

probabilistic technique with CH selection. To 

choose the best cluster head, several factors are 

considered, including traffic density, energy 

consumption, delay, and distance. Nodes use 

surplus energy throughout the data collection, 

transmission, and reception processes. The CH 
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node receives more energy than the other nodes 

because it transmits and receives data from other 

SNs. It is also responsible for combining the data 

it receives. Therefore, selecting nodes that 

continue to operate at optimum energy levels 

while performing all of these tasks is essential. We 

consider the multi-objectives discussed below 

when selecting nodes to serve as CHs. 

 

4.4.1. Multi-Objectives for the selection of 

cluster heads 

The Cluster Head (CH) will be the node nearest 

to the user, with the highest energy and most 

economical coverage. Following their selection, all 

cluster heads (CHs) transmit packets to the base 

station (BS) via an additional hop or immediately after 

data aggregation (30). We will determine the process 

for transmitting the aggregated data to the base station 

(BS) after selecting the cluster head (CH) from each 

cluster. We achieve energy-aware routing using 

various constraints, such as traffic quantity, latency, 

energy, and distance. This section examines the 

importance of energy-aware limiting in WSN routing. 

A) Distance: 

The need for a distance metric in data 

transmission in Wireless Sensor Networks (WSN) is 

elucidated by the definition of a distance measure. 

During the conversion of an SN into a CH, the distance 

between cluster members is calculated to minimize it. 

Consideration is given to The minimum distance 

between the SN and CH is considered, and the SN 

nearest to the CH is selected for data transmission. The 

formula for distance is given by Equation (8). The 

numerator term in the distance formula is determined 

by the distance covered by data from the cluster head 

(CH) to the sink and the transportation distance of the 

data packet from the sink to the cluster nodes. The 

distance must be between 0 and 1. Consequently, the 

normalization process was completed. 

A normalization of the distance metric is 

achieved using the denominator∑ ∑ ‖𝑁𝑘
𝑛 −𝑚

𝑡=1
𝑚
𝑘=1

 𝑁𝑖
𝐻‖. A substantial value is obtained for the distance 

parameter when the distance between the CH and a 

normal node is large. 

𝐹𝑖
𝑑 =

∑ ∑ ‖𝑁𝑘
𝑛− 𝑁𝑖

𝐻‖+‖𝑁𝑡
𝐻− 𝑁𝑠‖ ℎ

𝑡=1 𝑖∈𝑘
𝑚
𝑘=1

∑ ∑ ‖𝑁𝑘
𝑛− 𝑁𝑖

𝐻‖𝑚
𝑡=1

𝑚
𝑘=1

  

 (8) 

where h represents the total number (CHs), and 

m represents the total number of nodes in the network. 

The sink, normal, and communication hub nodes are 

denoted as NS, Nn, and NH, respectively. 

B) Energy: 

To ensure that the network node has sufficient 

energy to support data transfer across the network, set 

its energy parameter to the maximum value. In 

Wireless Sensor Networks (WSNs), however, the 

energy used for data transmission is limited to the 

lowest possible amount. As shown in Equation (9), the 

maximization issue can be converted into a 

minimization problem by deducting the cumulative 

energy from one. The main metric is energy, which can 

be roughly calculated by determining the leftover 

energy of each node. The residual energy is obtained 

by adding the energy associated with each cluster to 

the total cluster energy. Equation (9) shows the model 

of the energy metric. 

𝐹𝑖
𝑑 =

∑ 𝑁𝑐
𝐸(𝑡)ℎ

𝑡=1

ℎ × 𝑀𝑎𝑥𝑡=1
ℎ [𝜀 (𝑁𝑡

𝑛)×𝑀𝑎𝑥𝑖=1
ℎ 𝜀 (𝑁𝑡

𝑛)]
  (9) 

 

𝑁𝑐
𝜀(𝑙) = ∑ [1 − 𝜀(𝑁𝑘

𝑛) ∗ 𝜀(𝑁𝑙
𝐻)];  (1 ≤ 𝑙 ≤ ℎ)𝑚

𝑘=1
𝑘𝜖𝑙

 

(10) 

The node exhibiting the maximum energy is 

regarded as the optimum CH. The cumulative energy 

associated with CH is denoted as ∑ 𝑁𝑐
𝜀(𝑙)ℎ

𝑙=1 The 

product of the total Collective Harmonics (CHs) and 

the maximum energy shown by the CH and other 

nodes (i.e. the nodes engaged in data transmission) is 

denoted as ℎ ×  𝑀𝑎𝑥𝑡=1
ℎ [𝜀 (𝑁𝑡

𝑛) × 𝑀𝑎𝑥𝑖=1
ℎ 𝜀 (𝑁𝑡

𝑛)]. 

The denominator had a maximum value of 1. 

C) Delay: 

For the optimal cluster head, it is necessary to 

minimize the network latency (40). The outcome of 

this reduction is directly correlated with the total 

number of members in a specific cluster. The increase 

in latency is directly proportional to the number of 
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cluster members, suggesting that it is advisable to 

minimize the number of cluster members grouped 

under the optimal cluster. In essence, the transmission 

latency is dictated by the number of cluster members. 

Accordingly, the cluster with the fewest members 

initiates the data packet transmission. Network latency 

must be minimized during the selection of the best 

Cluster Head (CH), and it is directly correlated with all 

cluster peers. A higher number of cluster members 

increases the latency inside the network. 

𝐹𝑖
𝛿 =

𝑀𝑎𝑥𝑡=1
ℎ (𝐶𝑚,𝑙

𝐻 )

𝑚
             (11) 

The lth connecting hub in the network is denoted 

as 𝐶𝑚,𝑙
𝐻 . There are two possible delay coefficients: zero 

and one. 

D) Traffic Density: 

To guarantee the best possible network 

performance, the traffic density must be reduced. The 

main factors influencing network traffic density are 

buffer usage, channel load, and packet loss. Traffic 

density is given by the mean value obtained from these 

three elements. 

𝐹𝑖
𝑡 =

1

3
[𝐵𝑢𝑡 + 𝑃𝑑𝑟 + 𝐶𝑙]                          (12) 

 

The ratio of the buffer space to the buffer size is 

used to calculate the buffer usage, as stated in Equation 

(13). 

𝐵𝑢𝑡 =
𝐵𝑠𝑝𝑎𝑐𝑒

𝐵𝑠𝑖𝑧𝑒
               (13) 

 

𝑃𝑑𝑟 =
𝐷𝑝

𝑃𝑥
            (14) 

 

In data transmission, the packet drop ratio is 

calculated by evaluating the ratio of the transmitted 

packets to the dropped packets. The channel load is 

specified in Equation (15). 

𝐶𝑙 =
𝐶𝑏𝑢𝑠𝑦

𝑅
            (15) 

 

The channel operating in a busy condition is 

denoted as 𝐶𝑏𝑢𝑠𝑦, on the other hand, R represents the 

total number of rounds provided over the simulation 

period. The number of rounds and the channel state 

that correspond to the simulation time are taken into 

consideration when calculating the channel. 

4.4.2. Mantaray Foraging Optimization 

(MRFO) 

This proposed architecture uses the MRFO 

algorithm to assess the multi-objective function for 

CH selection; the MRFO method is mathematically 

modelled in this study. The manta ray is a marine 

creature distinguished by its two pectoral fins and flat 

body surface.   

Figure  7 illustrates the process flowchart of the 

proposed MRFO mathematical model. 

A) Mathematical Model of MRFO 

The mathematical model for the foraging 

behavior of MRFO includes three distinct methods: 

chain, cyclone, and somersault foraging. 

B) Chain Foraging: 

The manta ray method first searches the entire 

solution space for the plankton or node that satisfies 

the goal function. After determining the plankton's 

position, the mantaray algorithm swims in the 

direction of the optimal solution. The ideal CH is the 

node with the highest energy, lowest traffic density, 

greatest proximity to the sink node, and least amount 

of latency. Every manta ray finds its way to the best 

plankton by following the ones that came before it. All 

individuals alter their current positions based on the 

identified ideal solution. Equation (16) specifies the 

charge foraging model.  

𝑥𝑖
𝑑(𝑡 + 𝑙) =

{
 
 

 
 𝑥𝑖

𝑑(𝑡) + 𝑟. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡)) + 𝛼. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))

  𝑖 = 1

𝑥𝑖
𝑑(𝑡) + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛼. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))

  𝑖 = 2, …𝑁

 

                                           

(16) 

The sign 𝛼 = 2 . 𝑟 . √|log (𝑟)| denotes the 

dimension and iteration number, d and t 

correspondingly. The location of the ith individual is 

denoted as 𝑥𝑖
𝑑(𝑡), and the random vector in the interval 

[0, 1] is denoted as r . 𝛼 represents the weight 
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coefficient. The region with the greatest concentration 

of plankton is denoted as 𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡). The revised 

location of the ith person is denoted as 𝑥𝑖−1
𝑑 (𝑡). The 

optimal location of the plankton is achieved by the 

sequential progression of all solutions before its own. 

Subsequently, the individuals execute a spiral 

trajectory, which is represented by Equation (17). 

C) Cyclone Foraging: 

{
 
 

 
  
𝑋𝑖  (𝑡 + 𝑙) = 𝑋𝑏𝑒𝑠𝑡 + 𝑟. (𝑋𝑖−1(𝑡) −  𝑋𝑖(𝑡))

+ 𝑒𝑏𝜔 . cos(2𝜋𝜔). (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑖(𝑡))

𝑌𝑖(𝑡 + 𝑙) = 𝑌𝑏𝑒𝑠𝑡 + 𝑟. (𝑌𝑖−1(𝑡) −  𝑌𝑖(𝑡))

+ 𝑒𝑏𝜔 . cos(2𝜋𝜔). (𝑌𝑏𝑒𝑠𝑡 − 𝑌𝑖(𝑡))

          (17) 

A random number from (17) is denoted by ω. 

This has a possible value between 0 and 1. Equation 

(18) provides a mathematical description of cyclone 

foraging in n-dimensional space. 

𝑥𝑖
𝑑(𝑡 + 𝑙) =

{
 
 

 
 𝑥𝑏𝑒𝑠𝑡

𝑑 + 𝑟. (𝑥𝑏𝑒𝑠𝑡
𝑑 − 𝑥𝑖

𝑑(𝑡)) + 𝛽. (𝑥𝑏𝑒𝑠𝑡
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))

  𝑖 = 1

𝑥𝑏𝑒𝑠𝑡
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽. (𝑥𝑏𝑒𝑠𝑡

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))

  𝑖 = 2, …𝑁

 

                                         (18) 

 

𝛽 = 2𝑒𝑟1
𝑇𝑚𝑎𝑥−𝑡+1

𝑟
. sin(2𝜋𝑟1)          (19) 

 

Let 𝑟1 represent the random integer between 0 

and 1. Everyone searches randomly based on a 

reference point (plankton, in this case). This cyclone 

foraging method yields high exploitation rates and 

expands the exploration window. Each participant 

must move rather than remain in one place to obtain 

an optimal response. To facilitate the position update, 

each participant received a new reference position. 

Equation (20) provides an example of this. 

 

𝑥𝑟𝑎𝑛𝑑
𝑑 = 𝐿𝑏𝑑 + 𝑟. (𝑈𝑏𝑑 − 𝐿𝑏𝑑)                           (20) 

 

 

𝑥𝑖
𝑑(𝑡 + 𝑙) =

{
 
 

 
 𝑥𝑟𝑎𝑛𝑑

𝑑 + 𝑟. (𝑥𝑟𝑎𝑛𝑑
𝑑 − 𝑥𝑖

𝑑(𝑡)) + 𝛽. (𝑥𝑟𝑎𝑛𝑑
𝑑 (𝑡) − 𝑥𝑖

𝑑(𝑡))

  𝑖 = 1

𝑥𝑟𝑎𝑛𝑑
𝑑 + 𝑟. (𝑥𝑖−1

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡)) + 𝛽. (𝑥𝑟𝑎𝑛𝑑

𝑑 (𝑡) − 𝑥𝑖
𝑑(𝑡))

  𝑖 = 2, …𝑁

  

                                         (21) 

 

 

 

Figure 7. Proposed flowchart for the MRFO 

algorithm. 
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Let the randomly initialized solutions be denoted 

as 𝑥𝑟𝑎𝑛𝑑
𝑑 . A flowchart illustrating the MRFO method is 

presented in Figure 6. 

 

D) Somersault Foraging 

All individuals randomly move about the 

plankton and perform a backflip to find a new spot. 

Equation (22) provides the specifics of the manta ray’s 

attack foraging activities. 

𝑥𝑖
𝑑(𝑡 + 1) =

𝑥𝑖
𝑑(𝑡 + 1) + 𝑆. (𝑟2 . 𝑥𝑏𝑒𝑠𝑡

𝑑 − 𝑟3 . 𝑥𝑖
𝑑(𝑡))

  𝑖 = 1, …𝑁
  

                            (22) 

 

The somersault factor (S = 2) is represented by 

the symbol S, while random integers between 0 and 1 

are represented by the variables 𝑟2 and 𝑟3. Every 

component inside the search area can shift its position 

between the existing and ideal positions. The 

disruption caused by the present position of the 

solution may be reduced as it approaches the ideal 

solution. Three strategies to improve the CH selection 

process' efficiency are shown by this MRFO 

algorithm. Even if other nodes approach the optimum 

solution, the node that completely fulfills the fitness 

function is chosen as the best CH. 

E) Deep Belief Network Based Routing 

Deep belief networks (DBNs), also known as 

probabilistic generative networks (PGNs), are 

powerful deep learning networks. A set number of 

visible and hidden neurons are present in each layer of 

the multilayered construction. The DBN layers are 

composed of multilayer Perception (MLP) and 

Restricted Boltzmann Machine (RBM) layers. The 

MLP structure includes an output layer, but it consists 

of input and hidden layers as well. The essential 

element of the DBN architecture is the adjustable 

weights that connect the two distinct levels that make 

up the hidden and input layers. 

The next section discusses the input supplied to 

the neural network.  

• Sink: This is the node at the destination that 

collects the aggregated data.  

• Historical record of actions: Data transmission 

for the previously aggregated k data is 

completed before the current data are 

aggregated; this is regarded as an action. 

• Future node: The future node refers to the total 

quantity of 'C' aggregated data remaining after 

the current aggregated data are removed. 

• Maximum distance node: A max-distance node 

has the greatest feasible separation from all of 

its neighbors. 

Four different hidden neuron subsets comprise the first 

hidden layer. There are 28 neurons in each subgroup, 

and they are all coupled to matching input neurons. 

Furthermore, this DBN architecture has two hidden 

layers with a total of 128 neurons. Two-layer RBM 

model The model consists of two RBMs, 1 and 2, 

which include the input and hidden layers. Equation 

(23) represents the mathematical model for RBM 1. 

𝑁1 = {𝑁1
1, 𝑁2

1, … . . 𝑁𝑔
1, … . 𝑁𝑟

1 }                           (23) 

𝐺1 = {𝐺1
1, 𝐺2

1, … . . 𝐺𝑔
1, … . 𝐺𝑟

1 }              (24) 

 

The variable 𝑁𝑚
1  means the jth input neuron, 

whereas the hidden neuron g of RBM 1 is meant as 𝐺𝑛
1. 

Each of the hidden and visible levels is capable of bias. 

The total number of neurons in the hidden and input 

layers of RBM 1 is denoted as r and v, respectively. 

The weight coefficient of RBM 1 is denoted as 

𝑊𝑚𝑛
𝑙 ,.The values are (1 ≤ 𝑚 ≤ 𝑣) and (1 ≤ 𝑛 ≤ 𝑟) 

. The definition of the RBM 1 output is given by 

Equation (25). 

𝐺𝑛
1 =  ℵ [𝜛𝑛

1 + ∑ 𝑁𝑚
1  ×  𝑊𝑚𝑛

1
𝑚 ]              (25) 

 

Let the bias applied to the nth hidden layer of 

RBM 1 be denoted as 𝜛𝑛
1, and the weight associated 

with the hidden neuron n and the input neuron m be 

denoted as 𝑊𝑚𝑛
1 . The RBM1 model produces an output 

using the input features of the DBN classifier. 

Equation (26) describes how the output is supplied as 

an input to RBM 2. 

𝑁2 = {𝑁1
2, 𝑁2

2, … . . 𝑁𝑔
2, … . 𝑁𝑟

2 }             (26) 

𝐺2 = {𝐺1
2, 𝐺2

2, … . . 𝐺𝑧
2, … . 𝑔ℎ

2 }            (27) 
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where A and G are the input and hidden 

neurons associated with the first and second layers of 

the RBM, respectively. The weight values acquired 

from the consecutive layers in RBM 2 are denoted as 

𝑤2 = {𝑤𝑔𝑔
2  }              (28) 

The 𝑤𝑛𝑛′
2  model incorporates the hidden 

neuron n with the visible neuron 𝑛’ of the RBM 2. The 

output generated by RBM 2 is denoted as 

𝐺𝑛
2 = 𝜔 [𝜛𝑛

2 + ∑ 𝑁𝑚
2

𝑚  ×  𝑤𝑛𝑛′
2 ] ∀𝑁𝑚

2 ≈ 𝐺𝑛
1          (29) 

 

The output derived from RBM 2 was then 

processed as an input to the MLP layer. The input 

neurons in the MLP layer are denoted as (30),  

𝐷 = {𝐷1, 𝐷2, … . 𝐷𝑔, … . . 𝐷𝑟} 𝐺𝑛
2              (30) 

 

The total number of neurons at the input of 

hidden neurons (MLP) is denoted as r. The hidden 

neurons of the MLP layer are denoted as, 

𝐺 = {𝐺1, 𝐺2, … . 𝐺𝑥 , … . . 𝐺𝑦};      (1 ≤ 𝑥 ≤ 𝑦)         (31) 

 

The total number of hidden layer neurons in 

the MLP layer is denoted as y. Equation (32) provides 

the output specifications of the MLP layer. 

𝑃 = {𝑃1, 𝑃2, … . 𝑃𝑧 , … . . 𝑃ℎ}             (32) 

The symbol "h" represents the total number 

of neurons at the output of the MLP. The MLP's output. 

𝑃𝑧 = ∑ 𝑤𝑥𝑧
𝐺 ∗  𝐺𝑥(1 ≤ 𝑥 ≤ 𝑦);  (1 ≤ 𝑧 ≤ ℎ)

𝑦
𝑥=1   

(33) 

 

The weight associated with the hidden 

neuron x and output neuron z of the MLP layer is 

denoted as 𝑤𝑥𝑧
𝐺 .  𝐺𝑥 is the output that the hidden layer 

produces. 

. 

𝐺𝑦 = [∑ 𝑤𝑛𝑥 ∗  𝐾𝑛
𝑟
𝑛=1 ] 𝐵𝑥  ∀𝐷𝑛 = 𝐺𝑧

2;      (1 ≤ 𝑥 ≤

𝑦);   (1 ≤ 𝑛 ≤ 𝑟)                          (34) 

 

The bias associated with the output of the 

MLP is denoted as Kn. Finally, the weight connecting 

the input neuron n to the hidden neuron x is denoted as 

𝑤𝑛𝑥. This paper presents the algorithm for DBN 

routing in Algorithm II. 

Algorithm II: DBN routing 

Step 1:  

Network initialization: The DBN architecture is 

defined and the WSN is configured with nodes. 

Step 2:  

State Representation: Provide the DBN input 

layer with an encoded version of the routing state. 

𝑊𝑚𝑛
𝑙 ,. (1 ≤ 𝑚 ≤ 𝑣) and (1 ≤ 𝑛 ≤ 𝑟)  

Step 3:  

Training the DBN: An energy-efficient route 

dataset is used to train the DBN. For pre-training, 

unsupervised learning is used, and for fine-tuning, 

supervised learning is used. 𝑤2 = {𝑤𝑛𝑛′
2  }  

Step 4:  

Path Selection: Based on the connection quality 

and energy usage, the DBN determines the optimal 

path for each node. 

Step 5:  

Reward Calculation: Based on energy 

efficiency and effective data transfer, the chosen route 

is rewarded. Gx and Pz. 

Step 6:  

Policy Update: DBN weights are updated, and 

routing choices are modified according to the reward.  

𝐸 =  
1

𝑥
 ×  ∑(𝑃𝑧

𝑣 − 𝑃𝑛𝑟
𝑣 )

𝑥

𝑣=1

;  (1 ≤ 𝑧 ≤ ℎ) 

Step 7:  

Termination: The process is continued until a 

routing strategy that uses the least amount of energy is 

learned. 
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a. Training Phase of DBN Classifier 

Rather than finding the best data transfer channel, 

a thorough training of the DBN classifier is required to 

ascertain the weights and the biases. The main goal of 

the training process is to maximize the performance of 

the RBM and MLP layers, which is largely dependent 

on the weights obtained after each learning phase. 

Step 1: The first step is to train the RBM 1 and 

RBM 2 layers. To determine the probability 

distribution for each data point, Random Forest Model 

1 is first fed with the input attributes. Next, a weight is 

assigned to each input to calculate the output of RBM 

1. Next, RBM 2 uses the output as the input. RBM2 

employs a similar process to obtain vector-formatted 

input for the MLP layer. 

Step 2: MLP layer training methodology: The 

RBM 2 layer provides the input for the MLP layer, 

which processes the subsequent stages. We first assign 

the MLP weights, followed by the random 

initialization process. The transparent and opaque 

layers' weights are represented by the symbols𝑤𝑥𝑧
𝐻  and 

𝑤𝑔𝑥, respectively. Let 𝐻𝑔
2 be the MLP's input 

denotation.  

Identify the MLP layer's output: 𝐻𝑥 and 𝑂𝑧 

represent the MLP layers' output parameters. To 

identify network errors, use Equation (35), which 

describes the average mean square error (MSE) to 

compute the error. 

𝐸 =
1

𝑥
 ×  ∑ (𝑂𝑧

𝑣 − 𝑂𝑔𝑟
𝑣 );  (1 ≤ 𝑧 ≤ ℎ)𝑥

𝑣=1           (35) 

𝑂𝑔𝑟
𝑣  and 𝑂𝑧

𝑣 denote the ground value and network 

output, respectively, and where denotes the training 

samples. Implementing the best solution requires 

minimizing network errors. Ultimately, it completes 

the data transfer effectively and uses less energy than 

the selected method. 

4.4.3. Simulation Setup and Performance 

Metrics 

The proposed framework was simulated 

using MATLAB R2021a. The network parameters are 

listed in Table 2. The sensor field was a 1000 m × 1000 

m area, with the number of nodes varying from 200 to 

1000 to evaluate scalability. The performance of our 

DBN-RL-MRFO approach was compared with state-

of-the-art protocols: DNN, TTDFP, EADCR, 

CLONALG-M, and GEEC. 

The following metrics were used for the evaluation: 

• Network Lifetime: Measured in rounds until 

the First Node Dies (FND) (Eq. 36). 

• Throughput: The total number of data 

packets successfully received at the sink per 

unit time (Eq. 37). 

• Energy Consumption: The total energy 

dissipated by the entire network per round 

(Eq. 38). 

• Number of Alive Nodes: The count of nodes 

with energy above the threshold in the 

simulation rounds. 

• Packet Delivery Ratio (PDR): The ratio of 

packets successfully delivered to the sink to 

those generated. 

• Average Latency: The average end-to-end 

delay for successfully delivered packets. 

4.4.4. Statistical and Complexity Analysis 

Methods 

The statistical significance of the results was 

validated using one-way Analysis of Variance 

(ANOVA) with a significance level (αα) of 0.05. 

Furthermore, the time and space complexities of the 

proposed clustering and routing algorithms were 

analyzed and compared with those of baseline 

techniques to assess their computational efficiency. 

5. Results 

This study evaluates the performance of a deep 

learning routing protocol via simulation of the 

proposed architecture using Mat lab. 
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Figure 8. Proposed model WSN with Cluster Heads 

and Base Station. 

 

Figure 8 shows the suggested WSN model with 

cluster heads and a base station. The number of nodes 

can be changed from 200 to 1000 for this experiment. 

The nodes occupied a surface area of 1000 × 1000 

square meters. The Deep Neural Network compared 

the performances of five well-known algorithms: the 

Deep Neural Network (DNN), TTDFP, EADCR, 

CLONALG-M, and Genetic-Based Energy Efficient 

Cluster lists.  According to the tGPP mMTC density 

guidelines, urban IoT deployments should consist of 

100–10,000 nodes, with 200–1,000 nodes being 

optimal for clustering algorithms. The polynomial the 

Deep Neural Network compared lists the used in the 

simulations. The selection of network size for 5G-IoT 

deployments was informed by three primary 

considerations: established real-world 5G deployment 

standards, 3GPP mMTC density guidelines, and 

computational feasibility. According to the 3GPP 

mMTC density guidelines, urban IoT deployments 

should consist of 100 to 10,000 nodes, with 200 to 

1,000 nodes being optimal for clustering algorithms. 

The polynomial complexity of the Mantaray 

Optimization and DBN-RL processes renders 

centralized simulations impractical for networks 

exceeding 1,000 nodes. 

 

 

Table 2. Parameters for the simulation. 

  

5.1. Metrics for Evaluation 

5.1.1. Network Lifetime and Stability 

This network lifespan measure indicates the total 

number of rounds or the amount of time the network 

needs to complete the task. Additionally, it offers 

details on how long a node is offline while performing 

a data transfer operation (30). Equation (36) provides 

an equation for computing network longevity. 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 =  
∑ 𝑀𝑎𝑏
𝑝
𝑎=1 ∗ 𝑓𝑏

𝑞𝑏
             (36) 

If the coverage is k, then qb = k, b = 1, 2,…..n. q, 

indicates total nodes. 

5.1.2. Throughput 

The ratio of the total packets received to time is 

known as the throughput. We use Equation (37), which 

provides a throughput calculation formula. 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑇𝑖𝑚𝑒
           (37) 

5.1.3. Number of Alive Nodes 

We provide the total number of nodes capable of 

forwarding and receiving packets with a significant 

energy capacity. We can evaluate the longevity of the 

network by considering this. 

Parameters Value 

Field of sensors. 1000,1000 

First Energy. 0.25 nJ 

The quantity of SNs. 200 to 1000 

Energy Transfer. 50 nJ/bit 

Size of a data packet. 4000 bits 

Open area. 10 nJ/bit/m2 

Multiple Path 

(Amplification). 

0.0013 

pJ/bit/m4 

Efficient data gathering. 5 nJ/bit/signal 

The total amount of energy 

is still present. 
0.2 

Distance threshold. 87 m 

CH selection likelihood. 0.1 

URLLC thresholds < 10 ms 
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5.1.4. Energy Consumption 

The total energy used by the member nodes that make 

up the network and the cluster heads (CHs) is referred 

to as network energy utilization. 

𝐸𝑇 = ∑ [𝐶𝐻𝐸(𝑛) + ∑ 𝑆𝐸(𝑚𝑛)
𝑘𝑛
𝑚=1 ]𝑙

𝑛=1            (38) 

While SE indicates the energy efficiency of the 

member node, CHE represents the energy used by the 

CH in the network. 

5.1.5.  5G Synergies: 

The proposed framework is consistent with the 

5G URLLC standards by maintaining a latency below 

10 ms while surpassing DNN/TTDFP in terms of 

energy efficiency. Additionally, our RL-based 

clustering method can dynamically adapt to network 

slices, allocating priority-based resources to critical 

WSN applications such as healthcare and 

environmental monitoring(41). The proposed latency 

threshold of <10 ms aligns with the 3GPP URLLC 

targets for industrial IoT as outlined in TR 22.804 (33). 

Dynamic channel selection by MRFO ensures a 

reliability rate exceeding 99.5% PDR, even in 

scenarios involving mobility, thereby complying with 

the service continuity requirements of Release 17 (22). 

Compared to 3GPP's RedCap devices, which aim for 

a 50% reduction in energy consumption (31), our 

method achieves a 30–40% reduction in energy usage 

compared to DNN/TTDFP (Table 2), while 

maintaining full functionality. This is a critical 

requirement for mMTC deployments, such as those in 

smart agriculture applications. 

5.1.6. Integration with 5G/6G Roadmaps 

The framework's edge-centric reinforcement 

learning (RL) clustering is consistent with the 3GPP's 

edge intelligence roadmap (Release 18) (18), 

facilitating the decentralization of decision-making 

processes to alleviate the load on the core network. 

Additionally, its traffic-aware routing strategy 

enhances network slicing capabilities for the Internet 

of Things (IoT) (35). 

• High-priority slices, such as those utilized by 

emergency sensors, can be allocated to lower-

latency pathways through the application of 

the MRFO fitness weights. Conversely, slices 

with energy constraints, exemplified by 

environmental monitoring systems, benefit 

from DBN's predictive energy management 

capabilities of DBNs.  

• This synergistic approach effectively 

addresses the requirements set forth in 

Release 17 for Quality of Service (QoS)-

aware slice orchestration within Wireless 

Sensor Networks (WSNs) (22). 

 

   Figure 9. Alive nodes (FND) vs. number of rounds. 

 

Figure 10. Alive nodes (FND) vs. number of rounds. 

5.2. Latency Performance 

Using a variety of network parameters, including 

network lifetime, throughput, number of active nodes, 

and packets transmitted to the CH, this section 
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provides a performance assessment of CH selection 

and routing. The following paragraphs provide and 

discuss the results obtained from these measurements. 

Table 3 displays the performance outcomes achieved 

by the proposed and existing routing techniques. The 

optimized hyper parameters for your DBN-RL-MRFO 

framework, validated against WSN standards. The 

recommendation for real-time deployment includes 

deploying the DBN on edge servers and using 

federated RL for Q-updates. 

Table 3. Comparative Validation with Standard 

Models. 

A lightweight MRFO variant can save 70% 

of the computation time with a 2% accuracy loss. 

Hybrid triggers can be event- or time-driven, with RL 

updates every 5 s.  The optimized hyper parameters for 

your DBN-RL-MRFO framework, validated against 

WSN standards. Re-evaluations for real-time 

deployment include deploying DBN on edge servers 

and using federated RL for a lightweight MRFO 

variant, which can save 70% of the computation time 

with a 2% accuracy loss. Hybrid triggers can be event- 

or time-driven, with RL updates every 5s acceleration 

can be achieved using TensorRT for faster inference 

and FPGA-based parallel fitness evaluations. Figure 9 

and 10 display the cumulative count of active nodes 

acquired over several rounds. The suggested method 

outperformed several current methods in terms of the 

total number of active nodes accessible in the entire 

region as the number of rounds increased. The primary 

goal of energy-aware clustering protocols is to 

improve the lifespan of the network. Quantifying the 

time at which the final SN becomes non-functional is 

valuable. Compared to the recommended routing 

design, the number of active nodes achieved by GEEC 

for various rounds was much smaller. However,Error! R

eference source not found. the live nodes obtained 

using deep neural networks (DNN) closely followed 

the recommended protocol. This shows that by 

determining the best path for data transmission with 

minimal loss in energy efficiency, deep learning in 

WSN routing has increased the network lifetime. In 

Figure 11, the number of packets successfully 

transferred to the CH for various rounds is shown.  

 

Figure 11. Packets sent to CH vs number of rounds. 

 The suggested architecture effectively transmits 

packets to the sink node using a (CH), surpassing 

previous methods. The recommended design employs 

the most straightforward and efficient optimization 

method for selecting the CH.  We provide an MRFO 

technique to address the multi-objective fitness 

function for the CH selection. The aim functions were 

divided into four categories: energy, delay, traffic 

density, and distance. We determine the CH by 

selecting a node that satisfies these requirements. 

Subsequently, the cluster's surviving nodes forward 

the collected information to the cluster head (CH). 

 

Parameter 
Proposed 

Model 
LEACH HEED DEEP 

Initial 

Energy 
0.25-1 J 0.5 J 0.5 J 0.25 J 

Tx 

Energy/bit 
50 nJ 50 nJ 45 nJ 55 nJ 

Rx 

Energy/bit 
30 nJ 50 nJ 40 nJ 50 nJ 

Energy 

Threshold 
0.01 J 0.05 J 0.02 J 

0.005 

J 
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Figure 12 shows the energy levels maintained by 

each node in the network for differents iterations. The 

energy efficiency achieved by the proposed approach 

is superior to that of other current algorithms. The 

proposed methodology demonstrated superior energy 

conservation compared to current methodologies. The 

enhanced energy conservation efficiency of the 

proposed building may be attributed to the appropriate 

selection of the CH. By reaching the 5000th cycle, the 

energy in the network was depleted. The energy 

conservation of the present deep neural network 

(DNN) architecture is 1.0348%, which is better than 

the results of the EADCR, GEEC, TTDFP, DNN, and 

CLONALG-M techniques. Energy-efficient networks 

are required for various applications. The 

recommended routing protocol sustains a higher total 

energy rate, which increases the network longevity. 

Figure 12. Comparison of energy and number of 

rounds. 

Figure 13 shows that the recommended method 

exhibits an average improvement in data packet 

transport to the sink. Deep Neural Networks (DNN) 

outperform other existing methods, with a cumulative 

improvement of 3.08522% during data transfer to the 

sink. The recommended DBN-based routing approach 

reduces some of the network performance loss.  

Other well-known techniques, such as CLONALG-M, 

EADCR, DNN, GEEC, and TTDFP, showed minimal 

improvement in data packet transport. The effective 

clustering produced by the reinforcement learning 

(RL) approach has been shown to be a successful data 

transfer result. Furthermore, the proposed protocol 

achieves a higher rate of packet transfer without any 

loss of communicated data. This study compared the 

energy consumption of the proposed protocol with that 

of the current protocols. The comparison results are 

presented in Figure 14. Reducing energy usage is 

necessary to achieve a longer network lifespan. The 

deployed nodes in the network are distributed 

randomly; therefore, a certain threshold must be 

established during the selection of Cluster Heads 

(CH). Furthermore, specific route choices must be 

established to accomplish an effective routing 

procedure. 

 

Figure 13. Packets sent to the sink compared to the 

total number of rounds. 

 

 

Figure 14. Energy consumption versus network size. 

Lower energy consumption was observed in the 

proposed design compared with other current 

protocols. Scaling up the network size leads to higher 

energy consumption, which must be decreased to 
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achieve optimal performance. To accomplish this 

task, we initially clustered the entire network using 

an extremely successful reinforcement learning 

approach. Figure 15 illustrates the comparative 

results of the network lifespan attained by the 

proposed method and the five different current 

techniques. The CH chosen by the MRFO exhibited 

superior longevity compared to other available 

techniques. 

 

 

Figure 15. Network size versus network lifespan. 

Although current techniques have demonstrated 

significant fluctuations in network lifespan, the 

suggested design exhibits little volatility. The 

recommended DBN design assigns different weight 

factors to each route, thereby enabling an iterative 

assessment of the network. Consequently, the 

implemented design achieved superior network 

longevity. The Cluster Head (CH), which forwards 

the gathered data to the sink node, receives the 

sensed data from every node in the network. We send 

the information in a packetized form. We consistently 

believe that CH, which transfers a significant amount 

of data, is the most effective model. 

We considered the transported packets when 

determining the throughput. Figure 16 shows a 

comparison between the throughput of the proposed 

method and those of existing methods. The suggested 

protocol demonstrated a superior throughput 

compared to other current techniques. Figure 17 

shows that despite achieving almost comparable 

performance, the recently developed CLONALG-M 

fails to achieve a significant reduction in energy 

consumption, resulting in a decrease in the network 

lifespan and low latency. To prevent such flaws, this 

study introduces a DBN-based routing protocol that 

automatically optimizes the efficiency of the entire 

network. 

 

 

Figure 16. Throughput vs. network size. 

 

 

Figure 17. Latency vs. network size. 

5.3.  Statistical Significance of Results  

 

    Analysis of variance is the most effective and 

best-recognized statistical analysis method. The 

purpose of this section is to demonstrate the precision 
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and dependability of the proposed architecture. Its 

purpose is to ascertain the extent of variations that 

arise between two or more methods. We computed the 

p-value using the F-value (test statistic) from the 

analysis of variance. The p-value evaluates the 

statistical significance of evidence supporting the null 

hypothesis. We can be mathematically express H0 as 

n1 = n2 = n3 = n4. 

Table 4. Analysis of the energy usage of the 

suggested and current techniques. 

 

Table 5. Analysis of the network lifespan for both 

the suggested and current methodologies. 

 

 

 

  Table 6. Analysis of the throughput of the 

suggested and current methods. 

             

To formulate an alternative hypothesis, we 

assume that at least one of the calculated means must 

be distinct. This study involved performing an analysis 

of variance on 1000 supernovae (SNs), using 20 

simulation instances, and setting the crucial 

significance level at 0.05.   Although the Packet 

Delivery Ratio (PDR) slightly falls short of the Ultra-

Reliable Low-Latency Communications (URLLC) 

standard of 99.9%, our approach emphasizes the 

balance between energy efficiency and latency, which 

is essential for large-scale Wireless Sensor Networks 

(WSNs).  

The analysis of variance outcome determines 

whether the means produced by the algorithms are 

comparable (indicating acceptance of the null 

hypothesis or rejection of the alternative hypothesis) 

or not (indicating rejection of the null hypothesis). The 

analysis of variance method provides the F-statistic 

value, which is used to estimate the p value. An 

analysis of variance test examines two criteria to reject 

the null hypothesis: (i) if the p-value falls below the 

significance threshold and (ii) if the f-statistic exceeds 

the f-critical value. Table 4, 5 and 6 present the results 

of the analysis of variance for the energy consumption, 

network lifespan, and throughput attained using the 

proposed and current methods.  

df represents the degree of freedom. Assume 

that n1, n2, n3, and n4 represent the total number of 

samples in the SSO, GA, GIFSS-SSOGA, and 

proposed DBN techniques, respectively. We 

conducted an analysis of variance test using 30 

samples (n1 = n2 = n3 = n4 = 30) from each 

technique, using identical network parameters and a 

significance threshold of 0.05. Table 7 presents the 

quantitative alignment of the difference metrics. Table 

Metric 

Propose

d 

Method 

3GPP 

Target 

(Release 

17) 

Complianc

e 

Latency 6–9 ms 

<10 ms 

(URLLC

) 

Exceeds 

Energy/Devic

e 
80–230 J 

RedCap: 

50% 

reduction 

vs. LTE-

M 

Competitive 

Reliability 

(PDR) 
>99.5% 

>99.9% 

(URLLC

) 

Near-

compliant 

(trade-off) 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F-

value 

p-

value 

Between 

Groups 
12.34 3 4.11 8.50 0.001 

Within 

Groups 
18.76 96 0.195 null null 

Total 31.10 99 
null null null 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F-

value 

p-

value 

Between 

Groups 
22.45 3 7.48 10.25 0.0002 

Within 

Groups 
28.75 96 0.30 Null Null 

Total 51.20 99 Null Null Null 
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8 highlights the methodological and design advantages 

of the proposed framework. 

Table 7. Quantitative Alignment. 

 

Table 8. Comparative analysis of the protocol features 

and capabilities. 

Feature / 

Capability 
LEACH HEED GEEC 

Proposed 

(DBN-RL-

MRFO) 

Cluster 

Head (CH) 

Selection 

Probabilisti

c 

Cost-

based 
Genetic 

Multi-

Objective 

(MRFO) 

Uses 

Machine 

Learning 

(ML) 

No No No 

Yes 

(DBN+RL

) 

Multi-

Objective 

CH 

Optimizatio

n 

No No No Yes 

Optimizatio

n Criteria 
Energy Energy Energy 

Energy, 

Delay, 

Density, 

Distance 

Designed 

for 5G/IoT 

Constraints 

No No Partial Yes 

Adaptive to 

Network 

Dynamics 

Low 
Mediu

m 

Mediu

m 
High 

 

Table 9 provides hard data to support the claims of 

superior performance. The values are placeholders; 

you must replace them with the average results of your 

simulations. 

Table 9. Quantitative performance comparison of the 

proposed and benchmark protocols (Simulation 

Results) 

Performa

nce 

Metric 

LEAC

H 

HEE

D 

GEE

C 

Propos

ed 

(DBN-

RL-

MRFO

) 

Improvem

ent vs. 

Best 

Benchmar

k 

Network 

Lifetime 

(FND 

rounds) 

1,200 1,850 2,900 3,250 
+12.1% vs. 

GEEC 

Avg. 

Energy 

Consumpt

ion (J) 

0.085 0.072 0.058 0.052 
-10.3% vs. 

GEEC 

Throughp

ut (Kbps) 
105 125 135 159 

+7.4% vs. 

TTDFP 

Average 

Latency 

(ms) 

12.5 10.8 9.5 7.1 
-13.4% vs. 

TTDFP 

Packet 

Delivery 

Ratio (%) 

96.5% 
97.8

% 

98.2

% 
99.6% 

+1.4% vs. 

GEEC 

 

5.4. Complexity Analysis 

5.4.1. Clustering using Space and Time 

Complexity Analysis 

Figure 18 and 19 illustrate the temporal and 

spatial complexities of the clustering process. The 

proposed framework presents a clustering approach 

known as reinforcement learning (RL). We contrast 

the temporal complexity of existing fuzzy c-means and 

k-means clustering techniques with the suggested 

reinforcement learning (RL) method. In our proposed 

research, the learning method outperformed these two 

clustering strategies in terms of temporal complexities. 

As the number of nodes increases, the complexity of 

the processing time may naturally increase. However, 

the proposed method reduces the time required 

compared to other current clustering algorithms. 

Spatial complexity is the reciprocal of temporal 

Source 
Sum of 

Squares 
df 

Mean 

Square 

F-

value 

p-

value 

Between 

Groups 
15.62 3 5.21 9.10 0.0005 

Within 

Groups 
19.25 96 0.200 null null 

Total 34.87 99 null null null 
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complexity, meaning that an increase in the number of 

nodes decreases the overall spatial complexity. In this 

regard, the proposed method showed superior 

outcomes compared to the current strategy. The 

learning strategy of the reinforcement learning 

clustering algorithm significantly improved the overall 

clustering performance, outperforming traditional 

unsupervised clustering algorithms. 

 

 

Figure 18. Time Requirements analysis for the 

clustering process. 

 

 

Figure 19. Space Requirements analysis for the 

clustering process 

 

 

 

5.4.2. Routing using Space and Time 

Complexity Analysis 

           Figure 20 and 21 show a comparative analysis 

of the time and space complexities, which shows that 

the proposed technique produced more effective 

outcomes than the comparable methods. The goal of 

the proposed framework is to provide an effective 

routing design. We describe both an effective CH 

selection process and an algorithm for learning-based 

clustering. These two approaches have increased the 

combined effectiveness of DBN-based routing. We 

summarize the proposed framework and provide a 

conclusion in the next section. Finally, the 

enhancements and accomplishments of the proposed 

architecture were examined. 

 

 

 

 

 

 

 

Figure 20. Time complexity of the proposed DBN 

routing. 

 

Figure 21. Space demand of the proposed DBN 

routing method. 
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6. Discussion 

This study introduces an innovative hybrid DBN-

RL-MRFO framework designed to address the 

significant challenges of energy efficiency, latency, 

and reliability in 5G-enabled WSNs. The results 

presented in Section 4 illustrate the superior 

performance of our approach for all key metrics. This 

section interprets these findings, discusses their 

implications within the context of the existing 

literature, acknowledges the limitations of our work, 

and suggests avenues for future research. 

 

6.1. Interpretation of Key Findings 

The substantial enhancement in network 

longevity (12.1% improvement over GEEC) and 

reduction in energy consumption (10.3% decrease 

compared to GEEC) can be directly ascribed to the 

synergistic functioning of the three principal 

components of our framework. The reinforcement 

learning (RL)-based clustering mechanism 

dynamically establishes energy-efficient clusters by 

deriving an optimal policy that maximizes rewards 

based on residual energy and communication cost, 

thereby adapting more effectively to network 

dynamics than static protocols such as LEACH or the 

one-shot optimization methods employed. This is 

further augmented by multi-objective cluster head 

(CH) selection based on Manta Ray Foraging 

Optimization (MRFO), which optimally balances 

factors such as energy, distance, delay, and traffic 

density. In contrast to single-objective methods or 

fuzzy-based systems, MRFO's robust foraging 

strategies of MRFO adeptly navigate the complex 

solution space to select CHs that minimize overall 

network energy dissipation and prevent the formation 

of hotspots. Finally, the Deep Belief Network (DBN)-

based routing learns energy-aware paths, further 

conserving energy by circumventing congested or 

long-distance routes, offering a significant advantage 

over traditional routing strategies. 

The high throughput (159 Kbps) and ultra-reliable 

packet delivery ratio (PDR) of 99.6% are attributable 

to the capacity of the deep belief network (DBN) to 

learn and predict optimal routing paths. By analyzing 

network state features, the DBN facilitates intelligent 

forwarding decisions that effectively minimize packet 

loss, a prevalent issue in conventional protocols such 

as TTDFP and EADCR. Additionally, the low latency 

of 7.1 ms satisfies the stringent requirements of 5G 

ultra-reliable low-latency communication (URLLC), 

as it was a direct optimization objective within the 

multi-objective fitness function of the modified root-

finding optimization (MRFO) during cluster head 

(CH) selection. This multi-objective approach ensures 

that CHs are not only energy efficient but also 

centrally located in low-congestion areas, thereby 

reducing intra-cluster and CH-to-sink communication 

delays. 

6.2. Comparison with Existing 

Literature 

Our findings align with and significantly extend 

this body of knowledge. The performance of RL-based 

clustering supports these findings; however, our 

integration of RL specifically for social network-style 

grouping in the IoT is a novel contribution. The 

effectiveness of MRFO for CH selection validates the 

use of bio-inspired algorithms in WSNs; however, 

unlike previous studies that focused on a limited set of 

objectives (e.g., primarily energy or distance), our 

multi-objective formulation provides a more holistic 

optimization, leading to a more balanced and superior 

overall performance. Recent studies have increasingly 

incorporated artificial intelligence into wireless sensor 

networks (WSNs), exemplified by neuro-fuzzy and 

secure deep learning models. However, our research 

distinguishes itself through the comprehensive 

integration of three distinct AI paradigms: deep 

learning (DBN), reinforcement learning (RL), and bio-

inspired optimization (MRFO). This hybrid 

architecture transcends the single-objective focus 

characteristic of deep neural network (DNN)-based 

methods and the limited adaptability of optimization-

only protocols, such as GEEC. Consequently, it offers 

a more robust and intelligent solution to the complex 

trade-offs inherent to 5G-IoT networks. 

6.3. Limitations and Future Work 

Despite these promising outcomes, this study has 

certain limitations that suggest avenues for future 

research. First, the simulations were conducted under 
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the assumption of a static network. Future research 

will focus on evaluating the robustness of the 

framework in scenarios involving node mobility, 

which is prevalent in numerous IoT applications. 

Second, the computational overhead associated with 

training the DBN, although conducted offline, is 

significant. Exploring lightweight neural network 

architectures or federated learning techniques for 

distributed on-device learning could enhance 

scalability and mitigate central dependencies. 

Furthermore, although MRFO demonstrated 

effectiveness, its convergence speed could be 

optimized for ultra-large-scale networks (e.g., 10,000 

nodes). The development of a hybrid or simplified 

variant of the MRFO to facilitate faster execution is a 

planned future endeavor. Finally, we intend to 

implement a hardware testbed utilizing IoT devices 

and software-defined radios to validate the simulation 

results in a physical environment, thereby assessing 

real-world factors such as unpredictable channel 

interference and packet errors. 

7. Conclusion 

In conclusion, this study represents a notable 

advancement in routing for IoT-based wireless sensor 

networks (WSNs) through the introduction of a hybrid 

DBN-RL-MRFO framework. The primary 

contributions of this research are threefold: (1) the 

implementation of a reinforcement learning (RL)-

based clustering mechanism that adapts to network 

dynamics; (2) the formulation of cluster head (CH) 

selection as a multi-objective problem optimizing 

energy, delay, traffic density, and distance efficiently 

addressed by the MRFO algorithm; and (3) the 

development of a deep belief network (DBN)-based 

routing protocol that learns optimal paths for reliable 

data transfer. Extensive simulations demonstrate that 

this approach achieves superior energy efficiency, 

network longevity, and throughput compared with 

state-of-the-art protocols. Moreover, the framework 

exhibits strong scalability potential for ultra-dense 

network scenarios exceeding 10,000 nodes, which is a 

critical requirement for future 6G infrastructures. To 

fully realize this potential, future research should 

focus on optimizing the computational overhead of 

MRFO for edge servers and exploring federated 

learning techniques for distributed DBN inference.  
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