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Abstract

Effective indoor navigation in the presence of dynamic obstacles is crucial for mobile robots. Previous research on deep reinforcement

learning (DRL) for robot navigation has primarily focused on expanding neural network (NN) architectures and optimizing hardware

setups. However, the impact of other critical factors, such as backward motion enablement, frame stacking buffer size, and the

design of the behavioral reward function, on DRL-based navigation remains relatively unexplored. To address this gap, we present

a comprehensive analysis of these elements and their effects on the navigation capabilities of a DRL-controlled mobile robot. In

our study, we developed a mobile robot platform and a Robot Operating System (ROS) 2-based DRL navigation stack. Through

extensive simulations and real-world experiments, we demonstrated the impact of these factors on the navigation of mobile robots.

Our findings reveal that our proposed agent achieves state-of-the-art performance in terms of navigation accuracy and efficiency.

Notably, we identified the significance of backward motion enablement and a carefully designed behavioral reward function in

enhancing the robot’s navigation abilities. The insights gained from this research contribute to advancing the field of DRL-based

robot navigation by uncovering the influence of crucial elements and providing valuable guidelines for designing robust navigation

systems.
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1. Introduction

It could be deduced that in an environment where au-

tonomous robots are becoming integral to various sectors,

the development of sophisticated and robust robotic nav-

igation systems is imperative. Traditional motion plan-

ners and localization techniques such as Simultaneous Lo-

calization and Mapping (SLAM) [11], Dynamic Window

Approach (DWA) [14], and Adaptive Monte Carlo Local-

ization (AMCL) [54], rely heavily on predefined feature

extraction and prior environmental maps. Despite being

effective, these methods have considerable limitations as

they require extensive parameter tuning and have difficulty

adapting to new environments without further modifica-

tions. [33,57]. Additionally, these traditional systems are

compartmentalized, with separate modules for tasks such

as vision, planning, and control, resulting in suboptimal

overall performance due to isolated optimization of each

module [58].

Recently, the application of deep learning in au-

tonomous navigation of unmanned ground vehicles (UGVs)

has surged [3,20,24,37,49]. Deep learning’s ability to trans-

late raw inputs into precise steering commands enables

an integrated, end-to-end system, which is proficient in

both motion planning and obstacle avoidance. Compared

to traditional methods, classical machine learning tech-
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Figure 1: An overview of the robot hardware.

niques, such as supervised learning, reduce the need for

hand-tuning and adapt better to unfamiliar environments.

However, these methods also have limitations since data

collection for supervised learning is labor-intensive, and

the final system’s effectiveness relies heavily on the quality

of the dataset. [38,43].

Deep reinforcement learning (DRL) addresses these

limitations by providing a framework to train models

through direct environmental feedback, eliminating the

need for extensive data collection. DRL has gained sig-

nificant traction in recent years and is widely used in

autonomous navigation research for both LiDAR and

vision-based systems [42,45,58]. Despite its benefits, DRL

encounters challenges due to the costly and potentially

hazardous trial-and-error nature of data collection in real-

world environments. Therefore, agents are first trained in

simulations for efficient learning before being deployed

on physical robots. However, this approach introduces a

’reality gap,’ as current simulators fail to perfectly replicate

the complexities of the physical world, leading to potential

discrepancies in agent behavior between simulated and

real environments [23].

A prevalent observation in most prior DRL naviga-

tion research is the lack of exploration into the effects of

various design decisions on mobile UGVs [58]. Many stud-

ies adhere to standard practices regarding hyperparameters,

sensor configuration, reward design, frame stacking, and

direction of motion. In contrast, this work challenges these

norms by analyzing the impact of these design elements

on the navigational performance of a UGV DRL agent.

To develop a reliable, autonomous navigation agent with

dynamic obstacle avoidance capabilities, we assess these

elements within our novel framework.

Our framework, built on the Robot Operating System

2 (ROS 2) middleware suite [32] and the Gazebo simulator

[27], extends standard forward-only motion to a full range

of motion and evaluates the benefits of backward motion,

particularly for dynamic obstacle evasion. By implement-

ing various frame stacking configurations, we assess their

influence on dynamic obstacle avoidance. Additionally,

we introduce unique reward components to mitigate un-

desirable behaviors, such as ’swaying,’ thereby enhancing

real-world applicability. The efficacy of our system is val-

idated in both novel simulation environments and on a

custom-built, physical mobile robot.

With this work, our primary goal is to provide the

research community with insightful design guidelines for

creating reliable DRL UGV navigation systems. To this

end, we make the following contributions:

1. We develop an end-to-end framework for ROS 2

DRL-based UGV navigation, incorporating three off-

policy DRL algorithms.

2. We explore the impact of different off-policy algo-

rithms, hyperparameter configurations, and reward

functions on UGV navigation.

3. We investigate the utility of frame stacking and back-

ward motion for effective dynamic obstacle avoid-

ance.

4. We validate the system in real-world scenarios, em-

ploying a custom-built mobile robot (Figure1) navi-

gating in challenging environments with fast-moving

obstacles.

2. Related Work

In this section, we discuss the work related to the use of

DRL for robot navigation and obstacle avoidance.

2.1. Navigation

Significant advancements have been noted in the domain

of Deep Reinforcement Learning (DRL)-based navigation.

Among the initial research in this area, Duguleana et al.

were pioneers, combining Q-learning with a neural net-

work to develop a Deep Q-Network (DQN) motion planner,

capable of executing three distinct actions i.e., moving for-

ward, turning left, or turning right [10]. To reduce the state

space, the environment was segmented into eight angular

regions. This approach successfully managed navigation

in simple environments and established a foundation for

more complex DRL navigation research.

The following year, Tai et al. introduced a low-cost,

mapless DRL-based navigation system for mobile robots,

which mapped sparse Light Detection and Ranging (Li-

DAR) distance readings into continuous actions [47]. Ex-

periments in unseen environments with static obstacles

confirmed the model’s real-world transferability. How-

ever, due to a low laser count and a simplistic training



A
cc
ep
te
d
M
an
us
cr
ip
t

The manuscript will undergo further refinements before it is published in final form.

environment, the model’s performance was impaired when

encountering dynamic obstacles.

Further innovation came from Choi et al., who re-

placed the traditional 360° LiDAR with a 90° depth camera

and a state-of-the-art Long Short-Term Memory (LSTM)

network [6]. This combination outperformed agents with

a wide Field of View (FOV) but no memory. To bridge the

simulation-reality gap, they employed dynamics random-

ization, adding noise to scan readings, robot velocity, and

control frequency. This approach made the model robust

against unpredictable real-world dynamics.

Surmann et al. took a different approach, designing a

system to simultaneously train multiple DRL agents using

a lightweight 2D simulation, each in a unique environment

[46]. However, their work did not include dynamic obsta-

cles and was not entirely collision-free. In contrast, our

work demonstrated that Gazebo could effectively train an

autonomous navigation agent with robust generalization

capabilities.

Nguyen Van et al. demonstrated the versatility of

DRL-based LiDAR navigation by applying it to differ-

ent robotic models, such as a four-wheel omnidirectional

robot [40]. Their simulation experiments demonstrated the

agent’s capability to navigate between waypoints while

avoiding stationary obstacles.

Recently, Weerakoon et al. developed a navigation

robot using 3D LiDAR and elevation maps for reliable

trajectory planning in uneven outdoor environments [52].

Their network used a Convolutional Block Attention Mod-

ule to identify regions with reduced robot stability. Al-

though their method had a high success rate compared to

the dynamic window approach, the robot struggled with

steep ditches and surface boundaries, requiring additional

depth sensors and RGB cameras.

2.2. Obstacle Avoidance

In the rapidly evolving field of autonomous navigation, a

variety of methodologies employing deep reinforcement

learning (DRL) for obstacle avoidance have emerged. One

novel approach by Wang et al. [50] developed Deep Max-

Pain, a modular DRL method with separate policies for

reward and punishment, inspired by the operational mech-

anisms of the animal brain. They proposed a state-value

dependent weighting scheme based on a Boltzmann distri-

bution to balance the ratio between the two signals for the

final joint policy. This approach used both LiDAR scans

and RGB-camera images, achieving superior performance

compared to DQN in both simulations and real robots.

DRL navigation approaches incorporating global in-

formation from high-level planners have been proposed

by Jin et al. [25], Kato et al. [26] and Gao et al. [16]. Kato

et al. [26] developed a long-range DRL navigation system

by pairing a local DDQN agent with a topological map

global planner. Gao et al. [16] proposed a similar approach,

combining TD3 with Probabilistic Road Maps (PRM) to

create an indoor long-range motion planner capable of gen-

eralizing to larger, unseen environments. To improve DRL

agents from a practical standpoint, offline DRL has been

proposed [41,42].

However, in complex environments characterized

by continuous and large-scale obstacles, DRL navigation

may struggle to escape local optima. In such scenarios,

Liu et al. [30] proposed integrating structural RNNs into a

PPO-based neural network to handle unpredictable human

trajectories in dense crowds. This system, incorporating

two separate RNNs for spatial and temporal relations with

nearby humans, demonstrated superior performance com-

pared to ORCA, handling a significant number of humans.

However, a comparison with other DRL approaches has

yet to be conducted.

Simultaneously, Gao et al. [17] focused on irregular

obstacle detection by fusing laser scan and RGB camera

data. Their method used a novel depth slicing technique to

acquire pseudo-laser data encoding both depth and seman-

tic information, maximizing the advantages of both data

types.

Efficiency improvements in the training phase for

depth camera D3QN-based autonomous navigation were

proposed by Ejaz et al. [12]. They employed techniques

such as layer normalization and the injection of Gaus-

sian noise into the fully connected layers to reduce com-

putational costs and stimulate exploration, leading to re-

duced training times. Recent work also explores the use

of event cameras to reduce latency [18] and improve night

vision [29].

The integration of domain-expert knowledge into

the DRL training process for mapless navigation has been

demonstrated by Corsi et al. [7]. This approach enhances

performance and mitigates undesired behaviors by incor-

porating scenario-based programming (SBP) constraints

into the cost function, allowing explicit constraints to be

directly embedded into the policy optimization process.

In contrast to the complex architectures proposed by

Hoeller et al. [21], Liu et al. [30] and Gao et al. [17], this

work seeks to establish a DRL indoor navigation system

that balances reliable performance and simplicity. Simi-

lar to Corsi et al. [7], we aim to enforce specific desired

behaviors, but instead of using manually designed SBP

constraints, we focus on developing an effective reward

function to address complex navigation scenarios.

This work also seeks to address the limitations in

real-world applications identified by Choi et al. [6], Liu

et al. [30], and Gao et al. [17], particularly regarding the
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disabling of backward motion and its impact on pedestrian

movement speed and obstacle configurations. Our robot

is equipped with 360° LiDAR scans, enabling continuous

monitoring of its full surroundings and anticipating obsta-

cles from any direction, including those outside the robot’s

field of vision or approaching from behind. Through real-

world demonstrations, we aim to show that this comprehen-

sive sensing approach allows the robot to navigate safely,

even in the presence of fast-moving or unpredictably mov-

ing obstacles.

3. System Overview

Here we provide an overview of the theory behind the

system and describe the various tools and methods used

for the experiments1.

3.1. Local Navigation

Our goal is to develop a reliable, mapless, and decentral-

ized motion planner for mobile robots. The robot must

navigate from the starting location to the goal while main-

taining a safe distance from any obstacles. Essentially, we

aim to find the following optimal translation function:

vt = f(ot, pt, vt−1) (1)

where, for each time step t, ot is the current set of

readings from raw sensor data, pt is the current estimated

position of the robot, and vt−1 is the velocity of the robot

during the previous time step. The model is trained to ap-

proximate this optimal translation function, directly map-

ping the input observations to output action vt, which holds

the next velocity target for the robot.

Observation space. The observation space ON consists

of N LiDAR distance readings spaced evenly over 360°

around the robot, where N is specified for each model.

To increase the robustness of the policy, we add Gaussian

noise to the laser distance readings to reduce the simulation-

to-reality gap. The laser scan inputs are normalized to fall

within the range of [0, 1]. Other inputs are normalized to

the range [−1, 1]. Furthermore, the distance and angle to

the goal are derived from odometry information and con-

catenated with the LiDAR readings. Lastly, the previous

linear and angular velocities of the robot are included to

form the entire observation set.

Action space. The action space A is a two-dimensional

vector that defines both the desired linear velocity and an-

gular velocity of the robot at each time step. Before being

sent to the motor control unit, both output velocities are fed

through a tanh cell to obtain the normalized range [−1, 1].

1The associated code can be accessed via https://github.com/amjad-

majid/ROS2-DRL-Turtlebot3-like-LIDAR-Robot.

Depending on the model configuration, the linear velocity

ranges from zero velocity to maximum forward velocity or

from maximum backward velocity to maximum forward

velocity. The angular velocity always ranges from maxi-

mum clockwise velocity to maximum counter-clockwise

velocity.

3.2. Materials & Methods

This section describes the tools and methods used for the

experiments in simulation and discusses the system archi-

tecture as a whole (Figure 2).

3.3. Simulator

Figure 2: System architecture for the navigation stack. The nodes
and communication layer are implemented using ROS2. The DRL
environment node provides an interface to facilitate switching
between the Gazebo simulation and the physical robot.
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Agents are trained in simulation to largely automate

and accelerate the training process without the risk of dam-

aging equipment. However, contemporary simulators can-

not perfectly model the complexity of physical properties,

leading to the simulation-to-reality gap [56]. This gap can

be partially mitigated by introducing noise into the simula-

tion to lower the dependency of the policy on the precision

of input data. Selecting a simulator involves trade-offs

between performance, accuracy, and flexibility. We chose

the Gazebo simulator [27] for its balance between perfor-

mance, accuracy, and implementation speed. Gazebo is a

popular open-source 3D robotic simulator with a robust

physics engine and wide support for ROS, mobile robots,

and optical sensors.

3.3.1. Environment

Four different training and testing scenarios were built,

as showcased in Figure 3. The first scenario involves an

area of approximately 4.2 × 4.2 meters surrounded by

walls with no dynamic obstacles, serving as a control sce-

nario. The second scenario involves no static obstacles

other than the perimeter walls and six dynamic obstacles

to test how well an agent can deal with dynamic obsta-

https://github.com/amjadmajid/ROS2-DRL-Turtlebot3-like-LIDAR-Robot
https://github.com/amjadmajid/ROS2-DRL-Turtlebot3-like-LIDAR-Robot
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cles. The third scenario includes seven additional static

walls placed across the area and two dynamic obstacles,

forming the main scenario used in most experiments due

to its balanced difficulty. The fourth scenario is similar

to the third but with four additional dynamic obstacles,

functioning as the final and most challenging test for the

best-performing policies. Goal positions are designated

randomly from valid locations with a sufficient distance

margin to any obstacle.

Figure 3: The different stages used during training and evaluation
in simulation. TL: Stage 1, no obstacles (4.2× 4.2 m), TR: Stage
2, six dynamic obstacles (4.2× 4.2 m), BL: Stage 3, static and
two dynamic obstacles (6 × 6 m), BR: Stage 4, static and six
dynamic obstacles (6× 6 m).

3.3.2. Training Setup

The policies are implemented using PyTorch and trained

on a computer equipped with an AMD Ryzen 9 5900HX

and CUDA-enabled RTX 3050 Ti GPU for approximately

40 hours. During the training process, the outcome per

episode and the average reward per episode are recorded

and visualized in a graph.

Each trained policy is evaluated for 100 episodes on

the same stage it was trained on unless specified otherwise.

During evaluation, the following metrics are collected for

all experiments:

• Success Rate - The percentage of trials in which the

robot reaches the goal.

• Collision (Static) - The percentage of trials in which

the robot collides with a static obstacle.

• Collision (Dynamic) - The percentage of trials in

which the robot collides with a dynamic obstacle.

• Timeout - The percentage of trials in which none of

the other outcomes happen within the specified time

limit.

• Average Distance - The traveled distance in meters

averaged over all successful trials.

• Average Time - The elapsed time in seconds from

start to goal averaged over all successful trials.

For some experiments, the following additional met-

ric is also collected:

• Sway Index -Ameasure of how frequently the robot

changes its angular velocity, possibly causing the

robot to sway.

3.4. Physical System

As part of the DRL autonomous navigation platform, an

actual physical robot was developed to employ the policies

trained in simulation for real-world autonomous navigation.

This section provides an overview of the robot’s hardware

configuration, designed with two key characteristics in

mind: cost and customizability. The goal is to create an

inexpensive robot while maintaining the ability to scale its

computational capabilities according to the task’s demands.

Below are the details of the hardware components:

Mainboard. The main controller for our system is the

Jetson Nano board developed by Nvidia, running Linux

Ubuntu 20.04. The Jetson Nano features a dedicated 128-

core Maxwell GPU capable of efficiently running neural

networks while preserving battery power. The board has

sufficient computational power to run the trained DRL

policies and is available for less than €100 per unit. Ad-

ditionally, the Jetson module offers flexibility as it can

be easily swapped out for other modules from the Nvidia

Jetson family.

LiDAR. The current setup includes the S1 RPLIDAR laser

range scanner from Slamtec. The S1 RPLIDAR offers up

to 720 scan samples distributed over 360° around the robot

at a maximum frequency of up to 15 Hz. While the S1

RPLIDAR is relatively expensive at approximately €600,

it can be replaced with cheaper variants such as the RPL-

IDAR A1, sold at €100. The less expensive RPLIDARs

offer sufficient range, accuracy, and sampling frequency

for indoor navigation. For our application, we only require

40 scan samples at a sampling frequency of 10 Hz with

a maximum range of 3.5 meters. We modified the RPLI-

DAR driver software to reduce the overall system latency

by only using the 40 samples of interest.

Low-level controller. To simplify the design process, an

Arduino Mega 2560 is added as a second controller for the

robot’s low-level functions. TheArduinoMega handles the

PWM signals for motor control and manages the interrupt

handling for the tachometers. It is connected to the Jetson

Nano via a UART channel, over which ROS messages are

sent using the Rosserial Arduino ROS package.
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Motors and tachometer. The robot uses two Chihai

Gm25-370 300 RPM DC gear motors with integrated

interrupt-based magnetic encoders functioning as tachome-

ters. The tachometers provide odometry to the robot based

on kinematic calculations as described in [9]. The motors

are connected to the system through an L298N DC motor

driver module

, which regulates the motors’ speed and direction.

Power and Chassis. The entire system is powered by

three rechargeable 4.2 V Li-Po batteries connected to two

DC-DC boost converter modules, providing a 5V power

source for the Jetson Nano and a 12V power source for

the Arduino Mega and L298N motor driver module. The

chassis is 3D printed.

4. Results

4.1. Navigation Performance

This section examines the impact of different hyperparam-

eter and laser scan configurations on navigation perfor-

mance. It also compares various off-policy algorithms and

evaluates the best-performing policy across different stages

to demonstrate the system’s generalization capability.

5. Hyperparameter Tuning

As DDPG forms the basis for most off-policy actor-critic

algorithms, we start our experiments using the DDPG al-

gorithm to evaluate and select hyperparameter values that

are common to all actor-critic algorithms. While finding

the exact optimal hyperparameter configuration is difficult

and forms a research field of its own [2,8,53], by heuris-

tically selecting between extreme values and evaluating

the effect on the agent’s navigation performance, we can

achieve a sufficiently high success rate. We gradually ad-

just each parameter based on preceding results and then

retrain the policy under the same conditions. Table 1 shows

the results of the first experiment conducted in stage 3 with

the DDPG hyperparameter configurations and correspond-

ing evaluation metrics. Additionally, Figure 4 shows the

reward scores over time during training, averaging over

100 episodes. The initial parameters for model DDPG 0

were based on [47] and the baseline implementations by

OpenAI2.

First, DDPG 0 is evaluated in stage 1 with no obsta-

cles as a control condition, where it successfully reaches

the goal in 100% of the trials, confirming the expected

behavior. Next, the model is evaluated in stage 3, which

contains static and dynamic obstacles. In this stage, the

model achieved only a 69% success rate, with most failures

2https://github.com/openai/baselines

being static collisions. Evidently, the current configura-

tion is insufficient for our environment setup, necessitating

further investigation of the hyperparameters to improve

performance. We increased the laser scan density from 10

to 40 individual samples for DDPG 1, as the initial con-

figuration’s laser scan samples were too sparse, impeding

the agent’s ability to detect obstacles in time. Although

this adjustment initially showed no improvement, we hy-

pothesize that as the other hyperparameters become more

finely tuned, the increased scan samples will enhance per-

formance.

Replay Buffer Size. Analyzing the reward graph for

DDPG 1 in Figure 4, we observe that while the agent

learns a viable policy, it remains unstable throughout the

training session, with large oscillations and drops in the

reward curve. The first significant drop in performance

occurs around the 1000-episode mark, coinciding with the

experience replay buffer filling up. Once the replay buffer

is full, old experiences are replaced by newer entries. If the

replay buffer is too small, the policy may forget important

previous experiences and rely only on the most recent data,

potentially causing over-fitting and catastrophic forgetting

[1]. To address this, we increased the size of the replay

buffer for DDPG 2 to stabilize the learning process and pre-

vent significant policy relapses. Figure 4 suggests that the

increased buffer size positively affects training stability, as

the reward curve for DDPG 2 shows reduced oscillations

and drops, along with a higher overall reward. Table 1

confirms the improved performance, with a significant re-

duction in static collisions for DDPG 2. We do not further

increase the buffer size, as it should be limited to reduce

the probability of storing irrelevant experiences. A larger

replay buffer may store older, less relevant experiences

from earlier, less efficient policy iterations, ultimately

slowing down the training process.

Batch Size.

Figure 4: The average reward per 100 episodes for different batch
size and replay buffer size configurations in stage 3 (Figure 3).
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Table 1: Turtlebot3 navigation performance for DDPG configurations in stage 3. BS=Batch Size, RB=Replay Buffer Size, LR=Learning
Rate, CS=Collision, CD=Collision Dynamic, TO=Timeout

Training Evaluation

Model BS RB Discount LR Success CS CD TO Dist Time Speed

DDPG 1 in stage 1 128 1e+5 0.99 1e-3 100 0 0 0 3.45 20.11 0.78

DDPG 1 128 1e+5 0.99 1e-3 67 31 0 2 3.44 16.22 0.96

DDPG 2 128 1e+6 0.99 1e-3 75 13 7 5 3.94 17.12 0.99

DDPG 3 512 1e+6 0.99 1e-3 92 1 6 1 3.54 16.11 0.99

DDPG 4 1024 1e+6 0.99 1e-3 97 0 3 0 3.31 16.35 0.92

DDPG 5 1024 1e+6 0.99 3e-4 99 0 1 0 3.02 15.67 0.88

DDPG 6 1024 1e+6 0.99 1e-4 94 0 5 1 4.05 18.97 0.97

DDPG 7 1024 1e+6 0.999 3e-4 88 1 11 0 4.94 21.13 1.00

The batch size is another crucial hyperparameter that

affects both the speed and stability of the training process.

A larger batch size increases computational parallelism,

allowing more samples to be processed per second, and

provides a better estimate of the error gradient by process-

ing more samples per step [4,35]. Consequently, larger

batch sizes typically result in better optimization of the

objective function and enhanced stability. However, this

comes at the expense of slower convergence due to the

increased number of samples being processed. However,

larger batch sizes can also lead to poor generalization, re-

quire a larger memory footprint, and necessitate additional

processing power to maintain smooth training.

In their 2017 work, Tai et al. [47] configured a batch

size of 128 per training step. Since then, the computational

capacity of machines has improved, and machine learning

software libraries have been further optimized, making

it worthwhile to explore larger batch sizes for improved

stability and convergence. Figure 4 shows the average

reward during training for different batch sizes. The graph

reveals that a higher batch size significantly reduces fluc-

tuations in the reward curve, improving training stability.

The highest batch size, DDPG 4, results in better perfor-

mance and a more favorable reward curve compared to

the other configurations, as it processes more samples per

timestep, guiding it toward better optimization. We fix the

batch size at 1024 for the remaining experiments.

Learning Rate. Lastly, the learning rate and tau parameter

are critical factors affecting stability and training speed.

It is generally recommended to start with a larger learn-

ing rate and gradually decrease it until the best result is

achieved [4]. A larger learning rate allows the model to

learn faster but risks converging early to a sub-optimal

solution or not converging at all, whereas a smaller learn-

ing rate provides more stability at the expense of longer

training times.

Figure 5: The average reward per 100 episodes for different
learning rates in stage 3.
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Upon examining the reward graph for the different

learning rates in Figure 5, it is not immediately clear which

model performs best, as some models show a downward

trend in the reward graph later in the training process. How-

ever, DDPG appears to deliver the most stable results and

achieves the highest average reward. Although a lower

learning rate might eventually lead to better optimization

with more training time, part of the objective is to balance

performance with training duration. Therefore, we have

constrained the training period to 40 hours. During evalua-

tion, DDPG 4 achieved a success rate of 97%. Lowering

the learning rate slightly further optimized the solution

for DDPG 5, resulting in a success rate of 99% and lower

averages for both distance and time. Further decreasing

the learning rate for DDPG 6 did not yield any additional

performance improvements. Thus, the learning rate and

tau parameters are fixed at 3e−4.

5.0.1. LiDAR Configuration

After establishing a set of hyperparameters with acceptable

performance, we turned our attention to the number of scan

samples and their effect on obstacle avoidance. Table 2

shows the evaluation results for several DDPG policies
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Table 2: Turtlebot3 navigation performance for DDPG configurations in simulation stage 3.

Training Evaluation

Model Scans Success CS CD TO Avg. Dist Avg. Time

s10 10 44 36 20 0 2.11 13.51

s20 20 54 37 9 0 2.62 14.82

s40 40 94 0 5 1 4.05 19.13

s120 120 91 0 9 0 4.32 20.46

s360 360 91 1 7 1 4.63 21.86

s720 720 87 9 3 1 4.22 19.56

Figure 6: The average reward per 100 episodes for different DDPG
laser scan densities in stage 3.
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with different laser scan densities tested in stage 3. The

laser scans are distributed evenly across 360° around the

robot. For the current environment, configurations with

fewer than 40 scan samples severely deteriorate the agent’s

performance. This issue arises from the shapes and dimen-

sions of the obstacles used in the simulation. Without a

sufficiently high scan density, the agent cannot reliably

detect the corners of static obstacles, often resulting in col-

lisions when attempting to maneuver around the endpoints

of walls. Additionally, lower scan densities may cause

dynamic obstacles to fall between adjacent scan points,

rendering them undetectable until they are in close prox-

imity to the agent, thus complicating obstacle avoidance.

With 40 laser scan samples, the agent can detect ob-

stacles early enough to avoid collisions and successfully

navigate the environment, resulting in a 94% success rate

during evaluation. For the current environment setting,

configurations with more than 40 scan samples do not

seem to benefit the agent, resulting in either no significant

difference or slightly worse performance. Configurations

with fewer scan samples reduce the number of inputs for

the neural network, simplifying the learned policy. Among

the best-performing models, the configuration with 40 scan

samples also gives the best performance in terms of av-

erage distance and time per episode. Figure 6 shows the

average reward graphs for the DDPG models with differ-

ent scan densities, which align with the evaluation results.

Figure 7: The average reward per 100 episodes for different DRL
algorithms in stage 4.
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Around the 1500-episode mark, the difference in perfor-

mance becomes evident as the rewards for policies with

lower scan densities stagnate. The other policies follow

a fairly similar curve, with the 40-sample configuration

reaching the highest average reward.

It is important to note that the minimum detectable

obstacle size depends on the number of scan samples. With

the current configuration, some smaller obstacles, such as

table legs, might not be detected when the robot is still

far away. Different environment settings with various ob-

stacle sizes might require different scan sample densities

to achieve optimal performance. However, given that ad-

ditional laser scans provide no significant benefit for our

current environment setting, we continue with the 40-scan

sample configuration to keep the network input dimensions

to a minimum.

6. Algorithm Selection

Off-policy algorithms like DQN [51], DDPG [28,44], and

TD3 [15] decouple the experience collection and training

process. This allows the agent to explore and optimize

simultaneously, reusing previous experiences for greater

efficiency. DQN uses a deep neural network (DNN) to

approximate the Q-function for complex problems. DDPG,

designed for continuous environments, features two DNNs:
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Table 3: Navigation performance for different DRL algorithms in stage 4

Algorithm Success CS CD TO Avg. Dist Avg. Time Speed

DQN 79 1 10 10 4.01 20.27 0.90

DDPG 94 0 6 0 3.93 19.93 0.90

TD3 97 0 2 1 4.83 25.07 0.88

an actor proposing actions and a critic determining their

quality. TD3 improves on DDPG by introducing a second

Q-function and adding noise to target actions to reduce

the overestimation of Q-values. It also updates the policy

network less frequently, allowing Q-function minimization

before generating Q-values for policy updates.

To determine which off-policy DRL algorithm is best

suited for our application, we trained separate policies for

DQN, DDPG, and TD3 with the same configuration and

compared the results. Table 3 shows the evaluation re-

sults for the three different algorithms. As expected, DQN

performs the worst since it is designed for discrete action

spaces, whereas the navigation problem corresponds to a

continuous domain. DDPG achieves amuch higher success

rate as it is tailored for continuous action spaces and allows

for finer movement control, resulting in fewer dynamic

collisions and timeouts. Unsurprisingly, TD3 achieves the

highest success rate as it is an improved iteration of DDPG.

However, TD3 takes a slightly more conservative approach,

with a lower speed and greater average distance traveled.

Figure 7 shows the reward curve for each of the al-

gorithms collected during training. The reward curves cor-

respond to the evaluation results, with TD3 achieving the

highest overall score, although the difference with DDPG

is small. DQN training also appears slightly more unstable,

as the average reward drops significantly at some points.

Given that TD3 demonstrates the best performance without

increasing training time, we chose it as the algorithm for

the remaining experiments.

7. Generalization

After completing the reward function design and tuning

the hyperparameters, the best-performing TD3 policy is

evaluated in an unseen scenario with different dimensions

and features to validate the model’s generalizability. Table

4 shows the performance of the TD3 policy in different

scenarios. Stage 5 (Figure 8) simulates a realistic house

environment in an area of 15 × 10 meters, significantly

larger than the training stage of 6× 6 meters. Additionally,

stage 5 features multiple differently shaped static obstacles

resembling common household objects.

Figure 8: Stage 5 (15 × 10 m) features larger dimensions than
seen during training to verify the generalizability of the agent.

During the evaluation, the policy achieved a 94%

success rate in stage 5. Of the failed trials, 82% were

terminated due to timeouts, while only 18% were due to

collisions. The high incidence of timeouts can be attributed

to the larger area of stage 5, which includes extended con-

tiguous obstacles that sometimes cause the robot to become

ensnared in a loop, repeatedly navigating the same region.

Since the robot lacks memory capability, it does not recog-

nize the repeating trajectory, causing it to repeat the same

circular route until timeout. Additionally, during training,

the LiDAR sensor’s range is limited to a maximum of 3.5

meters, a distance rarely exceeded in the training stage.

In stage 5, however, distance readings often reach larger

values. Therefore, additional work is required to ensure op-

timal performance in larger environments, which is beyond

the scope of this paper.

7.1. Dynamic Obstacles

In the previous section, we demonstrated that the trained

policy can achieve a success rate of up to 97% in stage 3.

According to the evaluation results, most of the remaining

failures are due to collisions with dynamic obstacles. In

fact, Table 4 shows that the TD3 policy can achieve a

100% success rate in stage 2 when all dynamic obstacles

are removed. It is important to note that static collisions

are more likely to occur in scenarios that include dynamic

obstacles, as they may cause the robot to steer into static

obstacles while attempting to avoid a dynamic one.
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Table 4: Navigation performance for the best-performing TD3 policy trained in stage 4 and tested in different stages.

Stage Success CS CD TO Avg. Dist Avg. Time Avg. Speed

4 3 100 0 0 0 3.90 19.00 0.93

4 97 0 2 1 4.83 25.07 0.88

2 94 0 5 1 2.95 14.53 0.92

5 94 1 0 5 11.78 55.51 0.96

Dynamic obstacles present a more challenging prob-

lem for obstacle avoidance as they require the agent to have

a temporal understanding of the environment and consider

the trajectory of moving obstacles. Observations of the

agent in action suggest that dynamic collisions are likely

due to the agent’s inability to process the relationship be-

tween consecutive scan frames. Since the agent processes

only a single frame of LiDAR distance readings per step,

it cannot distinguish between moving and static obstacles

or deduce the velocity and direction of a dynamic obstacle.

Moreover, interactions with dynamic obstacles generally

occur less frequently than with static obstacles, causing the

policy to be more biased towards handling static obstacles.

As a result, when approaching a dynamic obstacle, the

agent tends to steer away at the last moment, similar to its

strategy for avoiding static walls. This approach works for

static obstacles, but dynamic obstacles require a different

strategy due to their added velocity, giving the agent less

time to respond and increasing the probability of collision.

To address this, we move from stage 3 to stage 4

(Figure 3), which includes four additional dynamic obsta-

cles to increase the number of interactions with dynamic

obstacles and better train the policy for dynamic obstacle

avoidance.

In an attempt to reduce the number of dynamic col-

lisions, we investigated different methods and evaluated

their impact on dynamic obstacle avoidance and overall

performance, as discussed below.

7.1.1. Frame Stacking

With frame stacking the agent processes the last sd ob-

servation sets at every step instead of only the current

observation, where sd is known as the stack depth. This is

achieved by multiplying the input dimension by the stack

depth resulting in a total input size of O ∗ sd = Od. Essen-

tially, this gives the agent the ability to develop short-term

memory and approximate the velocity of visible obstacles.

By combining the recent history of velocity commands

and scan frames the agent can compare the different values

and detect how fast an obstacle is moving and in which

direction. This enables the agent to distinguish between

Figure 9: Frame stacking enables the agent to distinguish between
static obstacles (green) and oncoming dynamic obstacles (red).

otot-1ot-2 otot-1ot-2

static and moving obstacles as the velocity of a moving ob-

stacle influences the distance readings as shown in Figure

9. Frame stacking has been used before in DRL naviga-

tion systems [13,17,31] for UGVs and other applications

[5,39]. However, to the best of our knowledge, the effect

of frame stacking on navigation performance and collision

avoidance has not been extensively studied before. Figure

10 illustrates how frame stacking is implemented and how

multiple frames are used as input for the neural network.

7.1.2. Frame Stepping

The upper range for sd is limited by computational capa-

bilities as the input dimension grows proportionally to sd.

However, with small values for sd the subsequent frames

will be very near to each other in time providing little

valuable information as the environment has shifted only

minimally. A simple way to increase the time range in

which the agent can observe each step is to set a larger sd.

However, as sd increases the number of input nodes to the

network grows which can quickly increase the complexity

of the model making it more difficult to train. Another
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Table 5: Navigation performance for different DRL stacking algorithms in stage 2.

Training Evaluation

Model Stack Depth Frame Skip Success CS CD TO Avg. Dist Avg. Time Speed

TD3 S1 1 0 94 0 5 1 2.95 14.53 0.92s

TD3 S2 3 0 96 0 3 1 3.23 16.15 0.91

TD3 S3 3 3 93 1 5 1 2.90 14.40 0.92

TD3 S4 5 0 96 0 3 1 3.11 15.58 0.91

TD3 S5 5 5 93 0 6 1 3.04 15.09 0.92

TD3 S6 10 0 95 0 2 3 3.46 17.67 0.89

Figure 10: Frame skipping and frame stepping depicted with
sd = 3 and sε = 3.
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approach is to insert an artificial delay to ensure enough

time has passed in between steps, but this would signif-

icantly increase the reaction time of the agent. Frame

stepping enables the agent to insert any amount of time

in between two subsequent input frames, without heavily

affecting the model complexity or responsiveness of the

agent. By keeping an active history of a number of the

most recent observations, the agent can recall and concate-

nate any of the samples stored in memory with the most

recent observation. Figure 10 shows how frame stepping

is implemented for our system using a rolling buffer prin-

ciple. At every timestep t the robot takes sd observations

at a step interval sε as input, which gives the observa-

tion set Ot, Ot−(sε)∗1, Ot−(sε)∗2, ..., Ot−(sε)∗(sd−1). This

is achieved by storing the lastN = sε ∗ sd observations in
a FIFO buffer of sizeB = On ∗sd ∗sε that is updated with
the most recent observation at every time step. Effectively,

this enables the agent to look back in time for sd frames at

steps of exactly sε frames at every time step without the

need for an artificial delay.

Figure 11: The average reward per 100 episodes for different
frame stacking/stepping configurations in stage 2.
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8. Simulation Results

To analyze the effect of frame stacking and frame step-

ping on dynamic obstacle avoidance, we trained multiple

policies with different frame stacking/stepping configura-

tions in stage 2, which contains only dynamic obstacles

to ensure that static obstacles do not influence the results.

Table 5 shows the evaluation results for the different frame

stacking and frame stepping configurations. The results

indicate that policies with frame stacking provide a slight

benefit over non-stacking policies, which aligns with our

expectations. The short history of scan observations and

velocity commands allows the agent to better anticipate

the trajectory of moving obstacles and navigate around

them. Conversely, employing frame stepping on top of

frame stacking did not seem to improve dynamic obstacle

avoidance. A possible explanation is that the time between

steps is already sufficiently large, and additional time be-

tween consecutive input frames delays the reaction speed

of the agent. While frame stepping did not benefit our train-

ing setup, it may improve frame stacking performance on

more powerful machines with less processing time between

steps.
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Figure 12: The average reward per 100 episodes showing the
effect of backward motion in stage 4.
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The corresponding reward graph in Figure 11 shows

that the non-stacking model learns slower and scores lower

than most other models, but eventually reaches a similar

reward value as TD3 S2. The difference in average reward

between the different stacking policies is relatively small,

with TD3 S4 performing slightly better than the others.

This is also reflected in the evaluation results, where TD3

S4 navigates more efficiently compared to TD3 S2, with a

similar success rate. In both cases, TD3 S2 and TD3 S4 per-

formed better than their counterparts with frame stepping.

Increasing the stack depth beyond five frames for TD3 S6

resulted in slightly worse performance in terms of success

rate and path efficiency. TD3 S6 also suffered more from

timeout failures, likely due to the larger number of frames

being processed as input, making it harder for the agent

to extract the correct information. A larger stack depth

retains each frame in memory longer, including frames

where obstacles were near. This may cause the agent to

take a more conservative and less optimal route, as the

presence of obstacles influences the network input over a

larger number of steps.

8.1. Backward Motion

In most previous works on DRLUGVnavigation, the agent

is restricted to moving only in the forward direction and

cannot move backward [58]. However, the ability to move

backward can significantly improve the robot’s ability to

avoid obstacles, especially dynamic ones. The main argu-

ments for omitting backward motion are twofold: 1) The

LiDAR scan only needs to cover the front half of the robot.

2) The agent does not need to learn how to effectively em-

ploy action commands for backward motion. However, we

argue that backward motion can provide a real benefit to

navigation performance, particularly in situations where

the robot needs to react quickly, as depicted in Figure 16,

where an obstacle suddenly approaches from around the

corner and the robot may not have sufficient time to ma-

neuver around it. In such scenarios, the only option is to

quickly move backward to avoid a collision.

Table 6 highlights the difference in performance be-

tween configurations with backward motion disabled and

enabled. While both policies achieve a near 100% success

rate, the policy with backward motion enabled performed

slightly better and did not suffer from a single collision.

Backward motion allows the agent to avoid collisions in

almost every situation, although timeouts can still occur.

The increase in success rate comes at a cost: the backward-

enabled (BE) agent travels a longer distance on average.

This increase in distance traveled and episode duration is

expected, as the agent generally moves backward to avoid

an obstacle and then deviates from the path to the goal.

Afterward, this deviation needs to be corrected, resulting

in a longer path, whereas other agents would have simply

crashed.

The reward graph in Figure 12 shows that the BE

policy learns faster than its counterpart at the beginning

of training. This could be explained by the fact that the

backward-disabled (BD) policy has to first learn how

to navigate around obstacles without moving backward,

which is a more complex behavior. Although the BE policy

yields better results during evaluation, both policies even-

tually converge to a similar reward value. The total reward

per episode is based on multiple factors and decreases

in value as time progresses. The higher success rate is

likely compensated by the increased distance and time

required for the BE, resulting in a similar reward curve.

However, since the success rate and collision count are the

most important metrics for this study, the BE agent is the

preferred choice.

Additionally, incorporating backwardmotion enables

the agent to learn more sophisticated maneuvers. Since the

reward component for linear motion remains unchanged

(equation 6), the robot is discouraged from moving in the

backward direction unless necessary to avoid a collision.

This gives rise to new behaviors, such as a turning ma-

neuver similar to a three-point turn commonly seen in

real-world driving to reverse the heading direction.

One of the challenges of training the agent with back-

ward motion enabled is that during the exploration stage,

taking purely random actions can result in the agent oscillat-

ing around its starting position as it alternates forward and

backward movement commands, leading to low-quality

replay buffer samples. Therefore, we bias the random lin-

ear actions toward forward movement to generate higher-

quality samples as the robot interacts with a larger part of

the environment. The effect of backward motion will also

be demonstrated on the physical robot in the corresponding

section.
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Table 6: The effect of backward motion on navigation performance in stage 4. BD=Backward Disabled and BE=Backward Enabled

Training Evaluation

Model BS RB Discount LR Tau Success CS CD TO Dist Time Speed

TD3 BD 1024 1e+6 0.99 3e-4 3e-4 97 0 2 1 4.83 25.07 0.88

TD3 BE 1024 1e+6 0.99 3e-4 3e-4 99 0 0 1 5.57 27.44 0.92

Finally, we compare the simulation results of our

best-performing agent with different mapless indoor navi-

gation algorithms that were evaluated in a similar setting.

Figure 13 shows the success rates for each of these algo-

rithms. The baseline TD3 is implemented by Gao et al. [16]

as a local planner for their long-range navigation system.

GRainbnow [34] combines Genetic Algorithms with DRL

to reduce the sensitivity to hyperparameter tuning. The

same authors have also evaluated the standard Rainbow

method [19] which achieved the lowest score out of all

algorithms. Corsi et al. [7] tested their SBP-based DRL

algorithm and compared it with a standard PPO implemen-

tation. All of these algorithms were evaluated over 100

episodes using the Turtlebot3 simulation platform. Our im-

plementation with backward motion achieves the highest

success rate out of the tested algorithms. Although the eval-

uated environments are not completely identical, our envi-

ronment includes both dense static and dynamic obstacles

and is generally more challenging than the environments

in the other works presented in Figure 13. Furthermore,

our system shows consistent performance in a variety of

environments with different characteristics. Therefore, it

is reasonable to assume that the performance of our algo-

rithmwill not decrease significantly in the slightly different

environments tested by the other papers.

Figure 13: The success rate of different mapless navigation al-
gorithms in simulation from the following papers: Rainbow [19],
Baseline TD3 [16], GRainbow [34], SBP-DRL [7].
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8.2. Reward Design & Behavior Shaping

The following section will describe a set of reward com-

ponents and their corresponding variants which can be

combined into a composite reward function. The goal for

each of the reward components is to facilitate the train-

ing process or to restrain certain undesired behavior. The

resulting composite reward functions are evaluated and

compared in simulation. The goal is to find an efficient

reward function that learns a satisfactory policy within a

reasonable amount of training time.

8.2.1. Reward Components

Awell-designed reward function is essential for achieving

good navigation performance within a feasible training

time [55]. In an environment where rewards are sparse,

extra steps need to be taken to accelerate the learning pro-

cess of the agent, especially at the start of training [22].

Through reward shaping [36] the agent is given incremen-

tal rewards with every step guiding it toward the final goal.

Although reward shaping usually requires hand-crafted so-

lutions based on expert knowledge, it is still widely used in

recent works as even simple rules can significantly boost

performance.

The autonomous navigation problem generally suf-

fers from the sparse reward problem as the only outcomes

associated with a true reward are reaching the goal or end-

ing in a collision with many steps in between. The majority

of works on autonomous navigation discussed in the related

work make use of a composite reward function consisting

of several combined reward components [58] in order to

guide the agent toward the goal. By combining different

reward components and adjusting the corresponding scal-

ing factors different types of behavior can be elicited from

the agent. For example, penalizing the agent for repeatedly

adjusting its steering direction can reduce the amount of

swaying and smoothen the trajectories. In this section, we

analyze the different reward components often used for

2d LiDAR autonomous navigation and their effect on the

training time and performance of the agent.

Distance. The most common auxiliary reward component

is based on the distance from the agent to the goal. dt
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represents the distance from the agent to the goal at time

step t. One version of this component is defined by the

difference in distance to the goal between two consecutive

time steps, rewarding the agent for moving closer to the

goal, as seen in the works by Tai et al. [47] and Long et al.

[31]. The difference is usually multiplied by a scaling

factor cd to keep the overall reward balanced and account

for differences in step frequency between machines. This

results in the following formula:

rd1
= cd ∗ (dt − dt−1) (2)

Note that here the bounds of rdistance are defined by

the maximum velocity of the robot and cd. This can make

it difficult to select the optimal value for cd to find suitable

reward limits.

For this reason, we propose a normalized version

that takes into account the maximum amount of distance

the agent could have covered given the time difference

ti − ti−1. Let vlmax
denote the maximum linear speed of

the robot:

rd2
= cd ∗

dt − dt−1

vlmax
∗ (ti − ti−1)

(3)

Using this approach the fraction part of the formula

is bound to the range [−1, 1], effectively limiting the range

of the entire component to [−cd, cd] which facilitates clear

bound selection in proportion to other components.

Other approaches consider only the current distance

and initial distance to the goal dt without taking into ac-

count each previous time step:

rd3
= cd ∗

2 ∗ d0
d0 + dt

(4)

Effectively, this creates an attraction field in which the

agent is rewarded for being in closer proximity to the goal

rather than being rewarded for actively moving toward the

goal. While this approach simplifies defining bounds for

the component it has the downside of rewarding the agent

for circling close around the goal rather than terminating

the episode. Therefore, it is best to ensure that the total

reward outcome per step can be at most 0 to avoid positive

reward stacking.

Heading. The heading component is not strictly required

for a good function model as it partly overlaps with the

distance component, but it can accelerate the process, es-

pecially at the start of training. Given the simple relation

between the angle to the goal and the output of the reward,

heading toward the goal is often the first thing the agent

learns.

rα = −αg (5)

Forward Velocity. To encourage the robot to move for-

ward, especially early on during the training, a reward

can be applied based on the linear velocity. By taking the

square of the difference between current linear velocity vl
and maximum possible linear velocity vlmax the system

penalizes slower velocities exponentially. cl is the scaling

constant for the component which can be adjusted to vary

the weight of the penalty.

rvl = −cl ∗ (vlmax − vl)
2 (6)

Steering Velocity. Long et al. [31] and Choi et al. [6]

give a penalty for larger angular velocities to encourage

the agent to follow a smooth trajectory. During training,

it was observed that without this component the agent

might exhibit so-called ’swaying’ or ’spinning’ behavior.

By employing swaying, the agent moves forward while

continuously alternating between high negative and posi-

tive angular velocities, leading to a swaying motion. Ex-

cessive angular velocities may cause the agent to sway

excessively in the opposite direction, resulting in overcom-

pensation. While this behavior does not necessarily im-

pede the agent from achieving satisfactory performance in

simulation, it presents significant challenges in real-world

scenarios, where physical constraints, mechanical wear,

and limited battery capacity are factors. Therefore, it is

desirable to have a stable navigation system that moves effi-

ciently along smooth trails with minimal excessive turning.

Another hazard of omitting the angular velocity penalty is

the occurrence of ’spinning’ behavior in which the agent

continuously spins in a single angular direction either in

place or with minimal linear velocity making little to no

progress toward the goal. With an improper training con-

figuration, the agent can be stuck in this detrimental cycle

for a long period without making progress toward an op-

timal policy. One method is to assign an exponentially

increasing penalty to larger angular velocities to encourage

the agent to turn as little as possible:

rva1 = −ca ∗ v2a (7)

However, the steering penalty may lead to sub-optimal path

planning as the agent avoids making large turns resulting

in less flexible path planning. Long et al. [31] and Choi

et al. [6] take a different approach by applying a steering

penalty only at larger velocities to allow the agent to turn

moderately but avoid large turns. This prevents the planned

routes from becoming too stiff while producing smoother

trajectories.

rva2 =

{
−ca ∗ |vs|, if vs > |π/4|
0, otherwise

(8)
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Obstacle Avoidance. Another common practice is the use

of safety margins to encourage the robot to proactively

avoid obstacles and keep a certain distance from them.

The simple approach is to assign a static negative reward

when the smallest distance reading dmin crosses a safety

threshold do and the robot enters the ’danger zone’ of the

obstacle:

rob1 =

{
−20, if dmin < do

0, otherwise
(9)

Amore refined approach involves gradual danger zones in

which the penalty increases as the robot moves closer to

the obstacle after entering the danger zone.

rob2 =


dmin − dcol
do − dcol

ifdmin < do

0, otherwise

(10)

Termination. Lastly, when the robot reaches a terminating

state, it receives a reward based on the event that ended

the session. If the distance to the goal dt is smaller than

the required minimum distance dgoal, the robot receives a

large positive reward. Conversely, if the smallest detected

distance dmin is less than the minimum allowed distance to

any obstacle dcollision, the robot receives a large negative

reward.

rtermination =


2500, if dt < dgoal

−2000, if dmin < dcollision

0, otherwise

(11)

8.2.2. Reward Functions

To evaluate the effectiveness of different reward compo-

nents, we train multiple models using various composite

reward functions. Each DDPG model is trained for approx-

imately 40 hours, after which the best-performing iteration

is evaluated over 100 trials. The outcome of each episode

is recorded in Table 7, along with the average distance

covered and episode duration for all successful episodes.

The sway index, representing the variance in steering, is

calculated by summing the squared differences between

consecutive angular actions. Ahigher sway index indicates

undesirable ’swaying’ behavior, reducing system stability.

First, reward functions from various LiDAR-based

DRL navigation papers are reimplemented and evaluated

in our environment. Next, the reward functions are modi-

fied incrementally based on results and our hypotheses to

improve performance and reduce training times. The first

and most straightforward reward function RA considers

only the difference in distance to the goal between consec-

utive time steps (equation 2) as seen in the works of Tai

et al. [47] and Kato et al. [26].

Next, the reward function RB is derived from the

study by Long et al. [31] and includes a penalty for angular

velocities. As discussed before, this is necessary in order

to limit ’sway’ behavior. From the results, we see that

models trained without the angular velocity component

have a significantly higher sway index.

After observing the robot in action, it became clear

that the robot had too little incentive for moving forward.

The robot often came to a standstill when approaching

walls to avoid the collision penalty. This often resulted in

a timeout and slowed down the training process to such

an extent that it did not learn to maneuver around obsta-

cles. Therefore, in RD the linear velocity component is

introduced to encourage the robot to move forward. This

eliminates the number of timeouts but results in a much

higher number of collisions as the robot does not continue

to move forward even when close to obstacles.

Consequently, a non-terminating penalty is intro-

duced which penalizes the robot for moving close to any

obstacles. This motivates the robot to turn away from

the obstacle at an earlier time step giving it more time to

explore alternative routes and avoid a collision.

Combining all obtained insights results in the best-

performing reward function RG with a 95% success rate.

Although it’s difficult to specify each component’s contri-

bution, omitting any component reduces performance. Fur-

thermore, testing alternative components in reward func-

tionsRH , RI , andRJ showed no significant improvement

in any evaluation metrics.

Figure 14 shows the number of successful episodes

over the first 3500 episodes. This graph indicates how

fast each model learns the desired behavior which trans-

lates into the efficiency of the underlying reward function.

We see that RG, RH , and RJ show a similar success rate

where small discrepancies can be explained by small dif-

ferences in starting conditions. The success rates remain

fairly constant after the first 3500 episodes showing little

further improvement. Note that in theory, all reward func-

tions could eventually converge to a similar performance

level given an infinite amount of time. However, since part

of our goal is to optimize the training duration we limit

the amount of training time. The evaluation of different

reward functions concludes this part with RG being the

reward function of choice for our experiments.

9. Physical System Validation

This section evaluates the performance and robustness of

trained policies in various real-world scenarios.
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Table 7: Evaluation of different reward functions with varying components in stage 3.

Function Components Success CS CD TO Dist Time Sway index

RA rd1 − 1 35 53 12 0 3.06 9.15 0.031

RB rd1 + rvl + rva1 − 1 35 60 5 0 4.48 14.49 0.011

RC rd1
+ rα1

+ rvl
− 1 33 57 21 0 3.05 11.19 0.045

RD rd1
+ rva1 + rob1 − 1 22 13 6 59 3.50 9.93 0.012

RE rd1
+ rα1

+ rvl + rva1 − 1 32 57 11 0 2.75 9.75 0.011

RF rd1
+ rα1

+ rva1 + rob1 − 1 22 1 29 48 2.19 19.50 0.005

RG rd1 + rvl
+ rva1 + rob1 − 1 44 6 19 31 5.28 18.51 0.003

RH rd1 + rα1 + rvl + rva1 + rob1 − 1 93 2 3 0 4.30 23.01 0.012

RI rd2
+ rα1

+ rvl + rva1 + rob1 − 1 93 1 6 0 4.18 22.08 0.013

RJ rd1
+ rα1

+ rvl + rva1 + rob2 − 1 93 1 6 0 3.99 18.12 0.005

RK rd2
+ rα1

+ rvl + rva1 + rob2 − 1 90 0 10 0 3.77 20.04 0.013

Figure 14: The success rates over time during training for different
reward functions.
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9.1. Real-World Evaluation

One of the challenges in transferring the navigation pol-

icy from simulation to the real world is the precise tuning

needed to accurately translate model output actions into

physical motor control commands. In simulation, the re-

sulting forward velocity of the robot always scales linearly

with the action output at any value. However, for the

physical robot factors such as inertia, rolling resistance,

and imperfect motor and tachometer hardware cause the

real-world motion to deviate from the behavior in simula-

tion. To account for the inertia and rolling resistance of

the wheels a tuned base speed value is added to the motor

PWM signal to prevent the robot from remaining stationary

when the model outputs lower velocity commands. Further-

more, the maximum values for linear and angular velocity

need to be tuned to the appropriate values for the PWM

signal to the motors. Lastly, a low-level PID controller

is implemented on the Arduino board using tachometer

input to provide fast feedback to the motor actuators which

requires tuning according to the specifications of the robot

model.

Figure 15: The stage used for the real-world experiment presented
in Table 8. The starting position and goal are indicated by the
blue and green circles.

To demonstrate the transferability of the trained pol-

icy to the real world a physical experiment is conducted

in which the robot is repeatedly tasked with navigating

from the starting location to the goal in the environment

shown in Figure 15. The experiment consists of 20 trials

during which the outcome, distance traveled and duration

are recorded. In addition, we also measure the portion of

the total trial during which the robot is moving at maxi-

mum linear velocity. Table 8 shows that the robot is able

to achieve a 90% success rate during the performed ex-

periment. The shortest path for the current scenario can

be measured to be approximately 5 meters long while the

robot traveled 6.83 meters on average during the experi-

ment. The additional distance can be explained by the fact

that the robot maintains a safety margin to any obstacles as
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Table 8: Evaluation on the physical robot over the same trajectory for 20 trials in a real-world stage.

Algorithm Success CS Timeout Avg. Dist (m) Avg. Time (s) Max speed ratio

TD3 18 2 0 6.83 22.15 0.88

well as inaccuracies in the distance measurements, odome-

try, and motor output causing deviations from the desired

trajectory which are corrected by the robot, all resulting

in longer paths. Despite being trained in an environment

with different obstacles and dimensions the robot is still

able to navigate reliably in the unseen scenario.

9.2. Backward Motion

To demonstrate the viability and benefit of backward mo-

tion in the real world, we reproduced a realistic situation

in which the agent has to rely on backward motion in order

to avoid a collision as shown in Figure 16. The objective

of the robot in this scenario is to move forward toward its

goal position while avoiding any obstacles. The top left

image shows the starting situation where both the robot and

dynamic obstacle are approaching the same corner without

a line of sight between them. The top right image shows

the moment shortly after the robot detects the obstacle and

starts to decelerate in response to the approaching obsta-

cle. The obstacle is turning toward the direction of the

robot giving the robot too little time to maneuver around

the obstacle. The bottom left image features a robot with

backward motion. In this case, the robot is able to quickly

react and keep a safe distance from the obstacle even as it

moves toward the robot. After the path has been cleared

again the robot continues to move forward toward its des-

tination. On the contrary, the bottom right image shows a

robot without backward motion attempting to steer away

from the robot which results in a collision. Note that in

this situation the robot could not simply avoid a collision

by remaining stationary as the obstacle is moving in the

direction of the robot. Moreover, due to inertia, the robot

will still move forward slightly immediately after giving

the stop command and will come to a halt closer to the ob-

stacle as compared to in simulation. Avideo demonstration

of the depicted situation is made available online

In addition, a further demonstration of how back-

ward motion—compared to forward-only motion—to can

help the robot respond quickly in tricky situations is made

available online https://youtu.be/-eyNCvBohRk.

Figure 16: Backward motion enables the robot to avoid a collision
when a dynamic obstacle suddenly appears. TL (1): The robot
approaches the corner with no vision of the obstacle. TR (2):
The robot detects the obstacle moving toward it. BL (3a): The
BE policy evades the oncoming obstacle by moving backward. BR
(3b): The BD policy attempts to turn away and fails to avoid a
collision. Video: https://youtu.be/-eyNCvBohRk.

1. 2.

3a. 3b.

10. Discussion

Hyperparameter Tuning: The hyperparameter tuning

process highlighted the significant impact of parameters

such as replay buffer size, batch size, and learning rate

on the navigation performance of the Turtlebot3 using the

DDPG algorithm. Our experiments demonstrated that in-

creasing the replay buffer size from 1 × 105 to 1 × 106

enhanced the stability of the learning process, reducing

oscillations in the reward curve and leading to improved

performance in static collision avoidance. This finding

aligns with previous research indicating that a larger replay

https://youtu.be/-eyNCvBohRk
https://youtu.be/-eyNCvBohRk
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buffer helps mitigate the effects of catastrophic forgetting

and overfitting by retaining a more diverse set of experi-

ences [1].

Similarly, the adjustment of the batch size to 1024

significantly improved the stability of training, resulting

in smoother reward curves and better overall performance.

Larger batch sizes allow for better gradient estimates,

which contribute to more stable learning processes [4,35].

However, it is essential to balance batch size and computa-

tional resources, as excessively large batch sizes can lead to

diminished returns due to increased memory requirements

and slower convergence rates.

The learning rate tuning experiments underscored the

necessity of a carefully balanced learning rate to achieve

optimal performance. A learning rate of 3×10−4 provided

a good trade-off between training stability and speed, lead-

ing to the highest success rate of 99% for the DDPG 5

model. This result is consistent with the literature suggest-

ing that an appropriately tuned learning rate is critical for

avoiding premature convergence to suboptimal policies or

instability during training [4].

LiDAR Configuration: Our investigation into LiDAR

scan densities revealed that a configuration of 40 scan

samples provided the best performance for the Turtlebot3

in environments with both static and dynamic obstacles.

This configuration allowed the agent to detect obstacles

early enough to avoid collisions, achieving a 94

The results emphasize the importance of selecting an

appropriate scan density that balances the need for suffi-

cient environmental information with the computational

and learning complexity of the neural network. In envi-

ronments with different obstacle shapes and sizes, it may

be necessary to adjust the scan density to achieve optimal

performance.

Algorithm Selection: Our comparison of off-policy algo-

rithms, including DQN, DDPG, and TD3, demonstrated

that TD3 outperformed the others, achieving the highest

success rate of 97

The reward curves for the different algorithms rein-

forced these results, with TD3 achieving the highest overall

scores and the most stable learning process. Given its su-

perior performance and stability, TD3 was selected as the

algorithm for the remaining experiments.

Generalization: The generalization capability of the TD3

policy was evaluated in different stages, including a signif-

icantly larger and more complex environment in stage 5.

The policy demonstrated strong generalization, achieving

a 94

Dynamic Obstacles: Dynamic obstacles posed a signifi-

cant challenge, with most failures in stage 3 attributed to

collisions with moving obstacles. Our experiments with

frame stacking and frame stepping indicated that frame

stacking provided a slight benefit by enabling the agent

to develop short-term memory and better anticipate the

trajectories of moving obstacles. However, frame stepping

did not yield additional improvements, likely due to the

increased reaction time required.

Backward Motion: The introduction of backward motion

significantly improved the agent’s ability to avoid colli-

sions, especially in scenarios involving dynamic obsta-

cles. The backward-enabled (BE) policy achieved a higher

success rate and demonstrated more complex maneuvers,

such as reversing out of tight situations. The reward graph

showed faster initial learning for the BE policy, indicat-

ing that the ability to move backward facilitated quicker

adaptation to the environment.

Overall, the experiments highlighted the importance

of carefully tuning hyperparameters, selecting appropri-

ate LiDAR configurations, and designing effective reward

functions to achieve optimal navigation performance in

complex environments. The TD3 algorithm, with its su-

perior stability and performance, proved to be the best

choice for the Turtlebot3 navigation task, demonstrating

strong generalization and robustness in both simulated and

real-world scenarios.

11. Conclusion

In this study4, we developed a robust deep reinforcement

learning navigation stack capable of autonomous naviga-

tion and obstacle avoidance in both simulation and real-

world environments, achieving a 99% success rate in com-

plex, dynamic conditions. Our work demonstrated that

incorporating backward motion and 360-degree LiDAR

coverage could significantly enhance navigation perfor-

mance, challenging traditional conventions. Furthermore,

we reduced swaying through a carefully designed reward

function, resulting in smoother robot trajectories.

However, several factors limit the current system’s

potential. The robot hardware, which is still at the pro-

totype stage, requires improvements—particularly in the

steering mechanism and LiDAR placement. Although the

current system avoids convolutional and transformer net-

works to minimize complexity, these techniques represent

promising avenues for future enhancements to the robot’s

obstacle-avoidance capabilities. Additionally, integrating

an RGB camera alongside the LiDAR could provide valu-

able contextual information for improved dynamic obstacle

avoidance, despite the increased complexity and effort re-

quired to maintain transferability.

It could be deduced that our study provides a com-

pelling foundation for the development of autonomous

robotic systems and prompts further investigation into

4This work is derived from the MSc Thesis in [48].
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hardware design and the potential use of convolutional

and transformer networks.
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